Как происходит водный обмен у растений: процессы и движение воды по растениях. Старт в науке Какие силы заставляют подниматься воду к листьям

Как происходит водный обмен у растений: процессы и движение воды по растениях. Старт в науке Какие силы заставляют подниматься воду к листьям

Высшее растение расчленено на органы, которые выполняют разные функции, но имеют много общих свойств, в числе которых можно назвать необходимость питательных, веществ и воды для протекания физиологических процессов. Так как вода поглощается не всеми органами, а в основном корневой системой, возникает необходимость ее передвижения по растению. Этот процесс составляет так называемый восходящий ток. Следует отметить, что это название отражает не направление, а характер передвижения и его локализацию в растении. Он проходит главным образом по мертвым тканям стебля или черешка - сосудам или трахеям у покрытосеменных растений и трахеидам у голосеменных. Однако эта локализация не абсолютна: вода способна перемещаться и по другим анатомическим элементам, например по флоэмной системе.

Вода с растворенным и в ней минеральным и веществами поднимается по сосудам древесины.

Если принять во внимание всю протяженность пути восходящего тока, то его можно будет разбить на два не равных по длине участка.

1. Мертвые гистологические элементы в середине проводящего пути сосуды или трахеиды. Протяженность этого участка значительна, но вода проходит по нему сравнительно легко, так как двигается пассивно по мертвым элементам, не испытывая с их стороны значительного сопротивления.

2. Живые клетки корня и листа, находящиеся в начале и в конце пути передвижения. Этот путь пространственно короток, но преодолевается он с большим трудом, так как клеточные мембраны препятствуют передвижению воды.

Передвижение воды в восходящем токе имеет важное значение в жизни растения. Этот ток снабжает водой все органы и ткани, приводя их в состояние тургора. Восходящий ток воды захватывает минеральные ионы, поглощенные корнем, переносит их и тем самым облегчает распределение (но не поглощение!) по растению.

Для того чтобы вода двигалась по растению (и не просто двигалась, а поднималась вверх), необходимы затраты некоторого количества энергии, точки приложения которой располагаются по концам тока, вследствие чего они получили название концевых двигателей.

Нижний концевой двигатель, или корневое давление. Его роль проявляется в основном при активном поглощении - нагнетании воды. При участии сократительных белков он не только подает воду в корневую систему, но и проталкивает ее дальше в сосуды корня и вверх по стеблю. Нагнетание воды

Активный энергозависимый процесс, который сильнее всего выражен в коре корня. Сила, развиваемая концевым двигателем, невелика (около 0,15 МПа), она может обеспечить подъем воды на высоту не более одного метра, т. е. достаточна для травянистых растений и небольших кустарников.

Симпласт - это система взаимосвязанных протопластов растения. Протопласты соседних клеток соединяются между собой плазмодесмами - цитоплазматическими тяжами, проходящими через поры в клеточных стенках. Вода с любыми растворенными в ней веществами, попав в протопласт одной клетки, может двигаться дальше по симпласту, не пересекая никаких мембран. Это движение иногда облегчается благодаря упорядоченному току цитоплазмы.

Апопласт - это система соприкасающихся клеточных стенок, образующая непрерывную сеть по всему растению. До 50% такого целлюлозного каркаса представляет собой как бы « свободное пространство», которое может быть занято водой. При ее испарении в межклетники с поверхности клеток мезофилла в непрерывном апопластном слое воды возникает натяжение, и весь он по механизму объемного потока подтягивается к месту убывания благодаря когезии (« сцеплению») водных молекул. В апопласт вода поступает из ксилемы.

Верхний концевой двигатель, или присасывающая сила транспирации. При постоянном испарении воды в листьях растений разбивается сосущая сила (1 - 1,5 МПа), отсасывающая воду от ближайших клеток и передающаяся последующим клеткам, по которым передвигается вода, вплоть до сосудов. В сосудах нет цитоплазмы, поэтому нет и осмотического давления, и всасывание жидкости происходит при участии всей величины сосущей силы. Она позволяет поднять воду на несколько метров, действуя подобно гидравлическому насосу. Этой силы достаточно для обеспечения водой кустарников и сравнительно небольших деревьев.

Поднятие воды по стволу дерева

Концевые двигатели могут поднять воду на высоту до 10 м. Но многие древесные растения имеют гораздо большую протяженность ствола, и тогда оба концевых двигателя не могут обеспечить подъем воды. У таких растений на помощь приходят силы сцепления между молекулами воды, которые очень велики и могут достигать 30 - 35 МПа. Этой силы достаточно для того, чтобы поднять воду на 1 - 2 км, что значительно превышает высоту любого дерева.

Силы сцепления молекул воды действуют только при определенных условиях: водные струи в сосудах должны идти непрерывно, без пузырьков воздуха. Если же в них попадает воздух, что возможно при их поранении или перерезке, передвижение воды прерывается. Этим объясняется завядание побегов древесных растений с листьями и цветками (например сирени), когда их после срезания помещают в воду не сразу, а спустя некоторое время.

Без воды ни одно растение не смогло бы существовать. Как вода попадает в растение и за счет какой силы проникает в каждую клетку организма?

Наука не стоит на месте, поэтому данные о водном обмене растений постоянно дополняются новыми фактами. Л.Г. Емельянов на основании имеющихся данных разработал ключевой подход к пониманию водного обмена растений.

Он поделил все процессы на 5 этапов:

  1. Осмотический
  2. Коллоидно-химический
  3. Теромодинамический
  4. Биохимический
  5. Биофизический

Данный вопрос продолжается активно изучаться, поскольку водный обмен непосредственно связан с водным статусом клеток. Последнее в свою очередь является показателем нормальной жизнедеятельности растения . Некоторые растительные организмы на 95% состоят из воды. В высушенном семени и спорах содержится 10% воды, в этом случае происходит минимальный метаболизм.

Без воды в живой организме не будет протекать ни одной реакции обмена, вода необходима для связи всех частей растения и координации работы организма.

Вода находится во всех частях клетки, в частности, в клеточных стенках и мембранах, составляет большую часть цитоплазмы. Без воды не могли быть существовать коллоиды и молекулы белка. Подвижность цитоплазмы осуществляется за счет большого содержания воды. Также жидкая среда способствует растворению веществ, которые попадают в растение, и разносит их во все части организма.

Вода необходима для следующих процессов:

  • Гидролиз
  • Дыхание
  • Фотосинтез
  • Другие окислительно-восстановительные реакции

Именно вода помогает растению адаптироваться к внешней среде, сдерживает негативное воздействие перепадов температуры. Кроме того, без воды травянистые растения не могли бы поддерживать вертикальное положение.

Вода поступает в растение из почвы, ее поглощение осуществляется с помощью корневой системы. Чтобы произошел водный ток, в работу вступают нижний и верхний двигатели.

Энергия, которая тратится на передвижение воды равняется сосущей силе. Чем больше растение поглотило жидкости, тем выше по значению будет водный потенциал. Если воды недостаточно, то клетки живого организма обезвоживаются, водный потенциал уменьшается, а сосущая сила увеличивается. Когда появляется градиент водного потенциала, вода начинает циркулировать по растению. Его возникновению способствует сила верхнего двигателя.

Верхний концевой двигатель работает независимо от корневой системы. Механизм работы нижнего концевого двигателя можно можно увидеть рассмотрев процесс гуттации.

Если лист растения насыщен водой , а влажность воздуха окружающей среды повышена, то испарение происходить не будет. При этом с поверхности будет выделяться жидкость с растворенными в ней веществами, будет происходить процесс гуттации. Такое возможно, если корнями воды поглощается больше, чем успевает испаряться листьями. Гуттацию видел каждый человек, она зачастую происходит ночью или утром, при высокой влажности воздуха.

Гуттация характерна для молодых растений, корневая система которых развивается быстрей, чем надземная часть.

Капли выходят наружу через водяные устьица, чему способствует корневое давление. При гуттации растение теряет минеральные вещества. При этом оно избавляется от лишних солей или кальция.

Второе подобное явление – плач растений. Если к свежему срезу побега приложить стеклянную трубку, по ней будет двигаться жидкость с растворенными минеральными веществами. Происходит это, поскольку от корневой системы вода движется только в одну сторону, такое явление называется корневым давлением.

На первом этапе корневая система поглощает воду из почвы. Водные потенциалы действуют под разными знаками, что приводит к движению воды в определенном направлении. К разности потенциалов приводит транспирация и корневое давление.

В корнях растений есть два пространства, которые не зависят друг от друга. Называются они апопласта и симпласта.

Апопласт – свободное место в корне, которое состоит из сосудов ксилемы, оболочек клеток и межклеточного пространства. Апопласт в свою очередь разделен еще на два пространства, первое располагается до эндодермы, второе после нее и состоит из сосудов ксилемы. Эндодрема выполняет роль барьера, чтобы воды не переходила на пределы своего пространства. Симпласт – протопласты всех клеток объединенные частично проницаемой мембраной.

Вода проходит следующие этапы:

  1. Полупроницаемая мембрана
  2. Апопласт, частично сипласт
  3. Сосуды ксилемы
  4. Сосудистая система всех частей растений
  5. Черешки и листовые влагалища

По листу воды двигается по жилкам, они имеют ветвистую систему. Чем больше жилок имеется на листе, тем легче воды двигается по направлению к клеткам мезофилла. в данном случае количество воды в клетке уравновешено. Сосущая сила позволяет передвигаться воде от одной клетки к другой.

Растение погибнет, если ей будет недоставать жидкости и связано это не с тем, что в ней протекают биохимические реакции. Имеет значение физико-химический состав воды, в которой происходят жизненно важные процессы. Жидкость способствует появлению цитоплазматических структур, которые не могут существовать вне этой среды.

Вода образует тургор растений, поддерживает постоянную форму органов, тканей и клеток. Вода является основой внутренней среды растения и других живых организмов.

Больше информации можно узнать из видео.

Секвойи, растущие в Калифорнии, являются одними из самых высоких деревьев в мире. Они достигают в высоту 110 метров. Возраст некоторых деревьев составляет 2000-3000 лет! Трудно передать то неизгладимое впечатление, которое оставляет прогулка среди этих гигантов. Истина сотворения здесь явлена могущественно. Клетки дерева организованы так, чтобы составлять корни, ствол, кору, водяные колонны, ветки и листья. Дерево напоминает гигантскую химическую фабрику. В нем в безупречном порядке происходят чрезвычайно сложные химические процессы.

Поразительно то, что это огромное дерево вырастает из маленького семени весом около 5 грамм. Только подумайте: вся информация о развитии и организации этих гигантов заложена в их ДНК, в крошечном круглом семени. Семя выполняет все “указания”, находящиеся в его ДНК, и превращается в гигантскую структуру, ни с чем не сравнимую по внешнему виду и размерам, содержащую 2500 тонн древесины. Потрясающе, не так ли?


Гигантская секвойя “Генерал Шерман”.
Ее высота равна 83,8 м, а периметр ствола у основания составляет 34,9 м. Возраст дерева насчитывает 2500 лет. Это дерево считается самым большим живым организмом на Земле. Его вес вместе с корневой системой составляет 2500 т. Объем дерева – 17000 кубометров, что в 10 раз больше, чем объем голубого кита.

В Писании сказано: «Бог высок могуществом Своим, и кто такой, как Он, наставник? …Помни о том, чтобы превозносить дела Его, которые люди видят. Все люди могут видеть их; человек может усматривать их издали» (Иов 36:22,24-25). Действительно, все люди могут видеть дела Божьи.

В день через листья секвойя выделяет до 600 литров воды, поэтому она постоянно поднимает воду от корней к веткам, преодолевая силу гравитации. Как же это удается дереву, не имеющему механических насосов? 100 метров – это действительно впечатляющая высота, сравнимая с двумя 14-этажными домами. Оказывается, внутри ствола секвойи есть специальная система узких взаимосвязанных трубочек, называемая ксилемой. Эта сложная внутренняя ткань дерева служит для того, чтобы проводить воду от корней к листьям. Трубочки ксилемы образуют клетки, расположенные одна над другой. Все вместе они формируют невероятно длинную колонну, простирающуюся от корней через ствол к листьям. Чтобы “качать” воду, секвойя должна формировать в этой трубе беспрерывную колонну воды.

Дерево поддерживает воду на протяжении всей своей жизни. Вспомните, как сильный ветер гнет дерево и ветки. Однако благодаря тому, что проводящая трубка состоит из миллионов маленьких отрезков, состыкованных вместе, поток воды постоянно удерживается. Одна цельная трубка не выполнила бы этой задачи. Поскольку вода обычно не течет вверх, как же дереву удается качать ее на такую высоту? Корни «подтягивают» воду вверх, а действие капиллярности (способность воды немного подниматься по стенкам трубки) добавляет давления. Однако эта сила обеспечивает дереву поднятие воды лишь на 2-3 метра. Основная движущая сила – это испарение и притяжение между молекулами воды. Молекулы имеют позитивно и негативно заряженные частицы, благодаря чему они сцепляются между собой с огромной силой, которая, согласно экспериментальным измерениям, составляет 25-30 атмосфер (1 атмосфера равна нормальному атмосферному давлению на уровне моря). Этого достаточно, чтобы продавить подводную лодку времен Второй Мировой войны, плывущую на глубине 350 метров под водой. Секвойя же запросто поддерживает давление в 14 атмосфер наверху водяной колонки. Вода, испаряясь с листьев, порождает силу всасывания. Молекула воды испаряется с листка и благодаря силе молекулярного притяжения тянет за собой другие молекулы вокруг нее, что создает небольшое всасывание в водяной колонке и тянет воду от соседних клеток листка. Эти молекулы, в свою очередь, притягивают окружающие их молекулы. Цепочка движения продолжается к самой земле и двигает воду от корней к верхушке дерева подобно тому, как насос поднимает воду из колонки на поверхность.

Мы понимаем, что дерево само не могло придумать такую сложную систему, которая мудро использует физику воды и энергию Солнца. Мы воздаем всю Славу Богу, Создателю неба и земли. Деревья-гиганты свидетельствуют об историчности книги Бытие, которая открывает нам их истинное происхождение: «И сказал Бог: да произрастит земля зелень, траву, сеющую семя, дерево плодовитое, приносящее по роду своему плод, в котором семя его на земле. И стало так» (Бытие 1:11).

Д. Куровский

Вода, поглощенная клетками корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации, а также силе корневого давления, передвигается до проводящих путей ксилемы. Согласно современным представлениям, вода в корневой системе передвигается не только по живым клеткам. Апопласт - это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы.

Симпласт - это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодемам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему.

Для того чтоб попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану и главным образом по апопласту и лишь частично по симпласту. Однако в клетках эндодермы передвижение воды идет, по-видимому, по симпласту. Далее вода поступает в сосуды ксилемы. Затем передвижение воды идет по сосудистой системе корня, стебля и листа.

Из сосудов стебля вода движется через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа.

Иногда мелких ответвлений жилок листа так много, что они подводят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности водой, имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. Вода передвигается от клетки к клетке благодаря градиенту сосущей силы.

Вся вода в растении представляет единую взаимосвязанную систему. Поскольку между молекулами воды имеются силы сцепления (когезия), вода поднимается на высоту значительно большую 10 м. Сила сцепления увеличивается, так как молекулы воды обладают большим сродством друг к другу. Силы сцепления обладают и между водой и стенками сосудов.

Степень натяжения водных нитей в сосудах зависит от соотношения процессов поглощения и испарения воды. Все это позволяет растительному организму поддерживать единую водную систему и не обязательно восполнять каждую каплю испаряемой воды.

В том случае, если в отдельные членики сосудов попадает воздух, они, по-видимому, выключается из общего тока проведения воды. Таков путь передвижения воды по растению.

Скорость перемещения воды по растению в течение суток изменяется. В дневные часы она на много больше. При этом разные виды растений различаются по скорости передвижения воды. Изменение температуры, введение метаболических ингибиторов не влияют на передвижение воды. Вместе с тем этот процесс, как и следовало ожидать, очень сильно зависит от скорости транспирации и от диаметра водопроводящих сосудов. В более широких сосудах вода встречает меньшее сопротивление. Однако надо учитывать, что в более широкие сосуды могут попасть пузырьки воздуха или произойти какие-либо иные нарушения тока воды.

Ксилема цветковых растений состоит из двух типов структур, переносящих воду,- трахеид и сосудов. В разд. 8.2.1 мы уже говорили о том, как выглядят соответствующие клетки в световом микроскопе, а также на микрофотографиях, полученных с помощью сканирующего электронного микроскопа (рис. 8.11). Строение вторичной ксилемы (древесины) мы рассмотрим в разд. 21.6.6.

Ксилема вместе с флоэмой образует проводящую ткань высших растений. Эта ткань состоит из так называемых проводящих пучков , которые состоят из особых трубчатых структур. На рис. 14.15 показано, как устроены проводящие пучки и как они располагаются в первичном стебле у двудольных и однодольных растений.

14.19. Резюмируйте в виде таблицы различия в строении первичного стебля у двудольных и однодольных растений.

14.20. Какова трехмерная форма следующих тканевых компонентов: а) эпидермиса; б) ксилемы; в) перицикла двудольных и г) сердцевины?

То, что вода может подниматься по ксилеме, очень легко продемонстрировать, погрузив нижний конец срезанного стебля в разбавленный раствор красителя, например эозина. Краситель поднимается по ксилеме и распространяется по всей сети листовых жилок. Если сделать тонкие срезы и просмотреть их в световом микроскопе, краситель будет обнаружен в ксилеме.

То, что ксилема проводит воду, лучше всего показывают опыты с "кольцеванием". Такие опыты проводили задолго до того, как стали применяться радиоактивные изотопы, позволяющие очень легко проследить путь вещества в живом организме. В одном из вариантов опыта вырезают кольцо коры с флоэмой. Если опыт не очень продолжителен, такое "кольцевание" не влияет на подъем воды по стеблю. Однако, если отслоить лоскут коры и вырезать ксилему, не повреждая лоскута коры, растение быстро завянет.

Любая теория, объясняющая передвижение воды по ксилеме, не может не учитывать следующие наблюдения:

1. Сосуды ксилемы-мертвые трубки с узким просветом, диаметр которого варьирует в пределах от 0,01 мм в "летней" древесине примерно до 0,2 мм в "весенней" древесине.

2. Большие количества воды переносятся относительно быстро: у высоких деревьев зарегистрирована скорость подъема воды до 8 м/ч, а у других растений она часто составляет около 1 м/ч.

3. Чтобы поднять воду по таким трубкам к вершине высокого дерева, необходимо давление порядка 4000 кПа. Самые высокие деревья - калифорнийские гигантские секвойи (хвойные, у которых нет сосудов и есть только трахеиды) и австралийские эвкалипты - бывают выше 100 м. Вода поднимается по тонким капиллярным трубкам благодаря высокому поверхностному натяжению под действием капиллярных сил; однако только за счет этих сил даже по самым тончайшим сосудам ксилемы вода не поднимется выше 3 м.

Все эти наблюдения удовлетворительно объясняет теория сцепления (когезии), или теория натяжения . Согласно этой теории, подъем воды от корней обусловлен испарением воды из клеток листа. Как мы уже говорили в разд. 14.3, испарение приводит к снижению водного потенциала клеток, примыкающих к ксилеме. Поэтому вода входит в эти клетки из ксилемного сока, у которого более высокий водный потенциал; при этом она проходит через влажные целлюлозные клеточные стенки сосудов ксилемы на концах жилок, как показано на рис. 14.7.

Сосуды ксилемы заполнены водой, и по мере того как вода выходит из сосудов, в столбе воды создается натяжения. Оно передается вниз по стеблю на всем пути от листа к корню благодаря сцеплению (когезии) молекул воды. Эти молекулы стремятся "прилипнуть" друг к другу, потому что они полярные и притягиваются друг к другу электрическими силами, а затем удерживаются вместе за счет водородных связей (разд. 5.1.2). Кроме того, они стремятся прилипнуть к стенкам сосудов под действием сил адгезии . Высокая когезия молекул воды означает, что для того, чтобы разорвать столб воды, требуется сравнительно большое растягивающее усилие; иными словами, столб воды обладает высокой прочностью на разрыв. Натяжение в сосудах ксилемы достигает такой силы, что может тянуть весь столб воды вверх, создавая массовый поток; при этом вода поступает в основание такого столба в корнях из соседних клеток корня. Необходимо, чтобы стенки сосудов ксилемы тоже обладали высокой прочностью и не вдавливались внутрь.

Такую прочность обеспечивают лигнин и целлюлоза. Данные о том, что содержимое сосудов ксилемы находится под воздействием большой растягивающей силы, были получены при измерении суточных изменений диаметра ствола у деревьев с помощью прибора, называемого дендрометром. Минимальные значения регистрировались в дневные часы, когда скорость транспирации максимальна. Крохотное сжатие отдельных сосудов ксилемы суммировалось и давало вполне измеримое уменьшение диаметра всего ствола.

Оценки прочности на разрыв для столба ксилемного сока варьируют в пределах примерно от 3000 до 30 000 кПа, при этом более низкие значения получены позднее. В листьях зарегистрирован водный потенциал порядка -4000 кПа, и прочность столба ксилемного сока, вероятно, достаточна, чтобы выдержать создающееся натяжение. Не исключено, конечно, что столб воды может иногда разрываться, особенно в сосудах большого диаметра.

Критики этой теории указывают на то, что любое нарушение непрерывности столба сока должно немедленно останавливать весь поток, так как сосуд должен заполняться воздухом и парами воды (явление кавитации ). Кавитацию может вызвать сильное сотрясение, сгибание ствола или недостаток воды. Хорошо известно, что на протяжении лета содержание воды в стволе дерева постепенно уменьшается, а древесина заполняется воздухом. Это используется в лесной промышленности, потому что такое дерево обладает лучшей плавучестью. Однако разрыв водного столба в части сосудов не очень сильно влияет на скорость переноса воды. Это можно объяснить тем, что вода переходит из одного сосуда в другой или же обходит воздушную пробку, передвигаясь по соседним клеткам паренхимы и их стенкам. Кроме того, согласно расчетам, для поддержания наблюдаемой скорости потока вполне достаточно, чтобы в каждый момент времени функционировала хотя бы небольшая часть сосудов. У некоторых деревьев и кустарников вода передвигается только по самому молодому наружному слою древесины, который называют заболонью . У дуба и ясеня, например, вода движется главным образом по сосудам текущего года, а остальная часть заболони выполняет функцию водного резерва. В течение вегетационного сезона все время прибавляются новые и новые сосуды, но больше всего их образуется в начале сезона, когда скорость потока гораздо выше.

Вторая сила, которая участвует в передвижении воды по ксилеме,- это корневое давление . Его можно обнаружить и измерить в тот момент, когда отрезают крону, а штамб с корнями продолжает выделять сок из сосудов ксилемы. Этот процесс эксудации подавляется цианидом и другими ингибиторами дыхания и прекращается при недостатке кислорода или понижении температуры. Для работы такого механизма, по-видимому, нужна активная секреция в ксилемный сок солей и других водорастворимых веществ, снижающих водный потенциал. Затем в ксилему поступает вода за счет осмоса из соседних клеток корня.

Одного положительного гидростатического давления около 100-200 кПа (в исключительных случаях до 800 кПа), создаваемого за счет корневого давления, обычно недостаточно, чтобы обеспечить передвижение воды вверх по ксилеме, но его вклад у многих растений несомненен. У медленно транспирирующих травянистых форм этого давления, однако, вполне хватает для того, чтобы вызвать гуттацию. Гуттация - это выведение воды в виде капель жидкости на поверхности растения (тогда как при транспирации вода выходит в виде пара). Все условия, уменьшающие транспирацию, т. е. слабая освещенность, высокая влажность и т.п., способствуют гуттации. Она весьма обычна у многих растений влажных тропических лесов и часто наблюдается на кончиках листьев молодых проростков.

14.21. Перечислите те свойства ксилемы, благодаря которым она обеспечивает транспорт воды и растворенных в ней веществ на большие расстояния.


Самое обсуждаемое
«Женщины — это не слабый пол, слабый пол — это гнилые доски»: цитаты Фаины Раневской Если не пить пиво с рыбкой раневская «Женщины — это не слабый пол, слабый пол — это гнилые доски»: цитаты Фаины Раневской Если не пить пиво с рыбкой раневская
Цитаты отто фон бисмарка Сильный всегда прав бисмарк Цитаты отто фон бисмарка Сильный всегда прав бисмарк
Отряд Бабочки, или чешуекрылые (Lepidoptera) Отряд Бабочки, или чешуекрылые (Lepidoptera)


top