Абиотические факторы. Влияние живых организмов на среду Воздушная среда и ее газовый состав

Абиотические факторы. Влияние живых организмов на среду Воздушная среда и ее газовый состав

Согласно последним данным, горные области с различными морфометрическими характеристиками и специфическими климатами занимают около 36% площади Земли. Горный рельеф занимает значительные площади и в нашей стране.

Влияние рельефа на климат велико и чрезвычайно разнообразно. Оно имеет две характерные черты:

1) под влиянием особенностей рельефа создаются специфические черты климата внутри горных стран;

2) горные системы, нарушая процессы адвекции воздушных масс и атмосферной циркуляции, оказывают существенное влияние на климат и погоду прилегающих районов.

Это в значительной степени зависит от формы и композиционной структуры отдельных долин и хребтов внутри гор, а также от положения (меридиональное или широтное) и масштаба горной системы в целом.

М.А. Петросянц подразделяет орографические влияния на атмосферные процессы на три класса:

1) крупномасштабные влияния орографии на формирование общего климатического распределения воздушных течений и планетарных систем циркуляции;

2) влияние орографии на мезомасштабные процессы, т. е. на возникновение, развитие, движение циклонов и антициклонов, обострение и размывание атмосферных фронтов вблизи гор (так называемый орографический циклогенез и фронтогенез);

3) локальные орографические влияния, обусловливающие появление разнообразных особенностей в ходе метеорологических величин, связанных с конкретными формами рельефа небольшой протяженности (долина, склон, перевал и др.).

Вследствие этих влияний в горных районах создается большая неравномерность (пятнистость) в пространственном распределении облачности, ветра, особенно осадков и опасных явлений погоды. Масштабы воздействия рельефа на атмосферные погодообразующие процессы различны. Так, по горизонтали влияние гор в зависимости от их высоты и протяженности может проявляться на расстоянии до 500 км и более. Например, среднегорная система Украинских Карпат оказывает заметное влияние на распределение осадков в прилегающих районах (от 100 до 300 км в зависимости от направления влагонесущего потока). По вертикали влияние крупных горных систем (Кавказ, Памир, Гималаи и др.) на воздушные потоки и термический режим тропосферы может распространяться до высоты 10–12 км. Как показали теоретические исследования академика А.А. Дородницына, даже сравнительно небольшие возвышенности (Донецкая, Среднерусская и др., высотой 200–400 м над ур. м.), расположенные среди равнины и имеющие значительную горизонтальную протяженность, могут оказывать воздействие на погодообразующие процессы, которое прослеживается до высоты 4 км.

В горах основными климатообразующими факторами, кроме географической широты и атмосферной циркуляции, являются следующие особенности рельефа:

  • высота места над уровнем моря;
  • форма (тип) рельефа;
  • экспозиция;
  • крутизна склонов.

Хотя абсолютная высота является основным из них, однако разнообразное влияние форм рельефа, экспозиции склонов и степени защищенности места оказывается иногда столь значительным, что полностью нивелируют ее роль. Вследствие различного влияния указанных факторов рельефа на атмосферные и радиационные процессы формируется особый тип климата, называемый горным климатом . Даже на довольно близких участках могут создаваться местные вариации климата (микроклиматы), проявляющиеся в его чрезвычайной пестроте, а также вертикальной зональности.

К абиотическим факторам среды относят субстрат и его состав, влажность, температуру, свет и другие виды излучений в природе, и его состав, и микроклимат. Следует отметить, что температуру, состав воздуха, влажность и свет можно условно отнести к «индивидуальным», а субстрат, климат, микроклимат и др. - к «комплексным» факторам.

Субстрат (буквально) - это место прикрепления. Например, для древесных и травянистых форм растений, для почвенных микроорганизмов это почва. В ряде случаев субстрат можно считать синонимом среды обитания (например, почва - это эдафическая среда обитания). Субстрат характеризуется определенным химическим составом, который оказывает влияние на организмы. Если субстрат понимается как среда обитания, то он в этом случае представляет собой комплекс характерных для него биотических и абиотических факторов, к которым приспосабливается тот или иной организм.

Характеристика температуры как абиотического фактора среды

Роль температуры как экологического фактора сводится к тому, что она влияет на обмен веществ: при низких температурах скорость биоорганических реакций сильно замедляется, а при высоких - значительно увеличивается, что приводит к нарушению равновесия в протекании биохимических процессов, а это вызывает различные заболевания, а иногда и летальный исход.

Влияние температуры, на растительные организмы

Температура не только является фактором, определяющим возможность обитания растений на той или иной территории, но она для некоторых растений оказывает влияние на процесс их развития. Так, озимые сорта пшеницы и ржи, которые при прорастании не подверглись процессу «яровизации» (воздействию низких температур), не дают семян при их произрастании в самых благоприятных условиях.

Для перенесения воздействия низких температур растения имеют различные приспособления.

1. В зимний период цитоплазма теряет воду и накапливает вещества, обладающие эффектом «антифриза» (это моносахара, глицерин и другие вещества) - концентрированные растворы таких веществ замерзают только при низких температурах.

2. Переход растений в стадию (фазу), устойчивую к воздействию низких температур - стадия спор, семян, клубней, луковиц, корневищ, корнеплодов и т. д. Древесные и кустарниковые формы растений сбрасывают листья, стебли покрываются пробкой, обладающей высокими теплоизоляционными свойствами, а в живых клетках накапливаются вещества-антифризы.

Влияние температуры на животные организмы

Температура по-разному влияет на пойкилотермных и гомойотермных животных.

Пойкилотермные животные активны только в период оптимальных для их жизнедеятельности температур. В период низких температур они впадают в спячку (земноводные, пресмыкающиеся, членистоногие и др.). Некоторые насекомые перезимовывают или в виде яиц, или в виде куколок. Нахождение организма в спячке характеризуется состоянием анабиоза, при котором процессы обмена очень сильно заторможены и организм может длительное время обходиться без пищи. В спячку пойкилотермные животные могут впадать и под воздействием высоких температур. Так, животные в нижних широтах в жаркое время дня находятся в норах, а период их активной жизнедеятельности приходится на раннее утро или поздний вечер (либо они ведут ночной образ жизни).

В спячку животные организмы впадают не только за счет воздействия температуры, но и за счет других факторов. Так, медведь (гомойотермное животное) впадает в спячку зимой из-за недостатка пищи.

Гомойотермные животные в меньшей степени в своей жизнедеятельности зависят от температуры, но температура влияет на них с точки зрения наличия (отсутствия) кормовой базы. Эти животные имеют следующие приспособления к преодолению воздействия низких температур:

1) животные перемещаются из более холодных областей в более теплые (перелеты птиц, миграции млекопитающих);

2) изменяют характер покрова (летний мех или оперение заменяются на более густой зимний; накапливают большой слой жира - дикие свиньи, тюлени и др.);

3) впадают в спячку (например, медведь).

Гомойотермные животные имеют приспособления для снижения воздействия температур (как повышенных, так и пониженных). Так, у человека имеются потовые железы, которые изменяют характер секреции при повышенных температурах (количество секрета увеличивается), изменяется просвет кровеносных сосудов в коже (при низких температурах он уменьшается, а при высоких - увеличивается) и т. д.

Излучения как абиотический фактор

И в жизни растений, и в жизни животных огромную роль играют различные излучения, которые или попадают на планету извне (солнечные лучи), или выделяются из недр Земли. Здесь рассмотрим в основном солнечные излучения.

Солнечные излучения неоднородны и состоят из электромагнитных волн разной длины, а следовательно, обладают и различной энергией. Поверхности Земли достигают лучи как видимого, так и невидимого спектра. К лучам невидимого спектра относятся инфракрасные и ультрафиолетовые лучи, а лучи видимого спектра имеют семь наиболее различимых лучей (от красного до фиолетового). квантов излучений увеличивается от инфракрасного до ультрафиолетового (т. е. ультрафиолетовые лучи содержат кванты наиболее коротких волн и наибольшей энергии).

Солнечные лучи имеют несколько экологически важных функций:

1) благодаря солнечным лучам на поверхности Земли реализуется определенный температурный режим, имеющий широтный и вертикальный зональный характер;

При отсутствии воздействия человека состав воздуха, тем не менее, может различаться в зависимости от высоты над уровнем моря (с высотой содержание кислорода и углекислого газа уменьшается, так как эти газы тяжелее азота). Воздух приморских районов обогащен парами воды, в которых содержатся морские соли в растворенном состоянии. Воздух леса отличается от воздуха полей примесями соединений, выделяемых различными растениями (так, воздух соснового бора содержит большое количество смолистых веществ и эфиров, убивающих болезнетворные микроорганизмы, поэтому этот воздух является целебным для больных туберкулезом).

Важнейшим комплексным абиотическим фактором является климат.

Климат - это совокупный абиотический фактор, включающий в себя определенный состав и уровень солнечной радиации, связанный с ним уровень температурного и влажностного воздействия и определенный режим ветров. Климат зависит также от характера растительности, произрастающей на данной территории, и от рельефа местности.

На Земле наблюдается определенная широтная и вертикальная климатическая зональность. Различают влажный тропический, субтропический, резко континентальный и другие разновидности климата.

Повторите сведения о различных видах климата по учебнику физической географии. Рассмотрите особенности климата той территории, на которой вы живете.

Климат как совокупный фактор формирует тот или иной тип растительности (флоры) и тесно связанный с ним тип фауны. Большое влияние на климат оказывают поселения людей. Климат больших городов отличается от климата пригородных зон.

Сравните температурный режим города, в котором вы живете, и режим температур области, где находится город.

Как правило, температура в черте города (особенно в центре) всегда выше, чем в области.

С климатом тесно связан микроклимат. Причиной возникновения микроклимата являются различия в рельефе на данной территории, наличие водоемов, что приводит к изменению условий на разных территориях данной климатической зоны. Даже на относительно небольшой территории дачного участка на отдельных его частях могут возникать различные условия для произрастания растений из-за разных условий освещения.

Это прямо или косвенно действующие на организм факторы неживой природы - свет, температура, влажность, химический состав воздушной, водной и почвенной среды и др. (т. е. свойства среды, возникновение и воздействие которых прямо не зависит от деятельности живых организмов).

Свет

(cолнечная радиация) - экологический фактор, характеризующийся нитенсивностью и качеством лучистой энергии Солнца, которая используется фотосинтезирующими зелеными растениями для создания растительной биомассы. Солнечный свет, достигающий поверхности Земли, - основной источник энергии для поддержания теплового баланса планеты, водного обмена организмов, создания и превращения органического вещества автотрофным звеном биосферы, что в конечном итоге делает возможным формирование среды, способной удовлетворять жизненные потребности организмов.

Биологическое действие солнечного света обусловливается его спектральным составом [показать] ,

В спектральном составе солнечного света различают

  • инфракрасные лучи (длина волны более 0,75 мкм)
  • видимые лучи (0,40-0,75 мкм) и
  • ультрафиолетовые лучи (менее 0,40 мкм)

Разные участки солнечного спектра неравнозначны по биологическому действию.

Инфракрасные , или тепловые, лучи несут основное количество тепловой энергии. На их долю приходится около 49 % лучистой энергии, которая воспринимается живыми организмами. Тепловая радиация хорошо поглощается водой, количество которой в организмах довольно велико. Это приводит к нагреванию всего организма, что имеет особенное значение для холоднокровных животных (насекомых, рептилий и др.). У растений важнейшая функция инфракрасных лучей состоит в осуществлении транспирации, с помощью которой из листьев водяными парами отводится излишек тепла, а также в создании оптимальных условий для вхождения углекислого газа через устьица.

Видимый участок спектра составляют около 50 % лучистой энергии, поступающей на Землю. Данная энергия необходима растениям для фотосинтеза. Однако на это используется лишь 1 % ее, остальная же часть отражается или рассеивается в виде тепла. Этот участок спектра oбусловил появление у растительных и животных организмов многих важных приспособлений. У зеленых растений, кроме формирования светопоглотительного пигментного комплекса, с помощью которого осуществляется процесс фотосинтеза, возникла яркая окраска цветов, что способствует привлечению опылителей.

Для животных свет в основном играет информационную роль и участвует в регуляции многих физиолого-биохимческих процессов. Уже у простейших имеются светочувствительные органоиды (светочувствительный глазок у эвглены зеленой), а реакция на свет выражается в виде фототаксисов - перемещение в сторону наибольшей или наименьшей освещенности. Начиная с кишечнополостных, практически у всех животных развиваются различные по строению светочувствительные органы. Различают ночных и сумеречных животных (совы, летучие мыши и др.), а также животных, обитающих в постоянной темноте (медведка, аскарида, крот и др.).

Ультрафиолетовая часть характеризуется самой высокой энергией квантов и высокой фотохимической активностью. С помощью ультрафиолетовых лучей с длиной волны 0,29-0,40 мкм в организме животных осуществляется биосинтез витамина D, пигментов сетчатки глаза, кожи. Эти лучи лучше всего воспринимают органы зрения многих насекомых, у растений они оказывают формообразовательный эффект и способствуют синтезу некоторых биологически активных соединений (витаминов, пигментов). Лучи с длиной волны менее 0,29 мкм губительно действуют на живое.

Интенсивностью [показать] ,

У растений, жизнедеятельность которых всецело зависит от света, возникают различные морфоструктурные и функциональные адаптации к световому режиму местообитаний. По требовательности к условиям освещения растения распределены на следующие экологические группы:

  1. Светолюбивые (гелиофиты) растения открытых местообитаний, успешно произрастающие только в условиях полного солнечного освещения. Для них характерна высокая интенсивность фотосинтеза. Это ранневесенние растения степей и полупустынь (гусиный лук, тюльпаны), растения безлесных склонов (шалфей, мята, чабрец), хлебные злаки, подорожник, кувшинка, акация и др.
  2. Теневыносливые растения характеризуются широкой экологической амплитудой к световому фактору. Лучше всего растут в условиях высокой освещенности, однако способны адаптироваться к условиям разного уровня затенения. Это древесные (береза, дуб, сосна) и травянистые (земляника лесная, фиалка, зверобой и др.) растения.
  3. Тенелюбивые растения (сциофиты) не выносят сильного освещения, произрастают только в затененных местах (под пологом леса), а на открытых никогда не растут. На вырубках при сильном освещении у них происходит замедление роста, а иногда - гибель. К таким растениям относятся лесные травы - папоротники, мхи, кислица и др. Адаптация к затенению обычно сочетается с потребностью хорошего водоснабжения.

Суточной и сезонной периодичностью [показать] .

Суточная периодичность определяет процессы роста и развития растений и животных, которые зависят от длины светового дня.

Фактор, который регулирует и управляет ритмикой суточной жизнедеятельности организмов, называется фотопериодизмом. Он является важнейшим сигнальным фактором позволяющим растениям и животным "измерять время" - соотношение между продолжительностью периода освещенности и темноты в течение суток, определять количественые параметры освещенности. Иными словами, фотопериодизм - это реакция организмов на смену дня и ночи, которая проявляется в колебании интенсивности физиологических процессов - роста и развития. Именно продолжительность дня и ночи очень точно и закономерно изменяется в течение года независимо от случайных факторов, неизменно повторяясь из года в год, поэтому организмы в процессе эволюции согласовали все этапы своего развития с ритмом этих временных интервалов.

В умеренном поясе свойство фотопериодизма служит функциональным климатическим фактором, определяющим жизненный цикл большинства видов. У растений фотопериодический эффект проявляется в согласовании периода цветения и созревания плодов с периодом наиболее активного фотосинтеза, у животных - в совпадении времени размножения с периодом обилия пищи, у насекомых - в наступлении диапаузы и выходе из нее.

К биологическим явлениям, вызываемым фотопериодизмом, относятся также сезонные миграции (перелеты) птиц, проявление их гнездовых инстинктов и размножения, смена меховых покровов у млекопитающих и т. п.

По необходимой длительности светового периода растения разделяют на

  • длиннодневные, которым для нормального роста и развития необходимо больше 12 ч светового времени (лен, лук, морковь, овес, белена, дурман, молодило, картофель, белладонна и др.);
  • растения короткого дня - им нужно для зацветания не менее 12 ч беспрерывного темнового периода (георгины, капуста, хризантемы, амарант, табак, кукуруза, томаты и др.);
  • нейтральные растения, у которых развитие генеративных органов происходит как при длинном, так и при коротком дне (бархатцы, виноград, флоксы, сирень, гречиха, горох, спорыш и др.)

Растения длинного дня происходят преимущественно из северных широт, короткого - из южных. В тропическом поясе, где продолжительность дня и ночи мало изменяются на протяжении года, фотопериод не может служить ориентирующим фактором периодичности биологических процессов. Его заменяет чередование сухого и влажного сезонов. Длиннодневные виды успевают дать урожай даже в условиях короткого северного лета. Образование большой массы органических веществ происходит летом в течение довольно длинного светового дня, который на широте Москвы может достигать 17 ч, а на широте Архангельска - более 20 ч в сутки.

Продолжительность дня существенно сказывается и на поведении животных. С наступлением весенних дней, длительность которых прогрессивно увеличивается, у птиц появляются гнездовые инстинкты, они возвращаются из теплых краев (хотя температура воздуха еще может быть и неблагоприятной), приступают к кладке яиц; теплокровные животные линяют.

Сокращение длительности дня осенью вызывает противоположные сезонные явления: отлет птиц, некоторые животные впадают в спячку, у других отрастает плотный шерстный покров, образуются зимующие стадии у насекомых (несмотря на еще благоприятную температуру и обилие корма). В этом случае уменьшение длительности дня сигнализирует живым организмам о близком наступлении зимнего периода, и они могут заранее подготовиться к нему.

У животных, особенно у членистоногих, рост и развитие также зависят от длины светового дня. Например, капустная белянка, березовая пяденица нормально развиваются лишь при длинном световом дне, тогда как тутовый шелкопряд, различные виды саранчи, совок - при коротком. Фотопериодизм влияет и на время наступления и прекращения брачного периода у птиц, млекопитающих и других животных; на размножение, эмбриональное развитие земноводных, пресмыкающихся, птиц и млекопитающих;

Сезонные и суточные изменения освещенности являются самыми точными часами, ход которых четко закономерен и практически не изменился в течение последнего периода эволюции.

Благодаря этому появилась возможность искусственного регулирования развития животных и растений. Например, создание растениям в теплицах, оранжереях или парниках светового дня длительностью 12-15 ч позволяет даже зимой выращивать овощные культуры, декоративные растения, ускорять рост и развитие рассады. Наоборот, затенение растений летом ускоряет появление цветков или семян позднецветущих осенних растений.

Продолжением дня за счет искусственного освещения зимой можно увеличить период яйценосности кур, гусей, уток, регулировать размножение пушных зверей на зверофермах. Огромную роль играет световой фактор и в других жизненных процессах животных. Прежде всего он является необходимым условием видения, их зрительной ориентации в пространстве в результате восприятия органами зрения прямых, рассеянных или отраженных от окружающих предметов световых лучей. Велика информативность для большинства животных поляризованного света, способности различать цвета, ориентироваться по астрономическим источникам света в осенних и весенних миграциях птиц, в навигационных способностях других животных.

На основе фотопериодизма у растений и животных в процессе эволюции выработались специфические годичные циклы периодов роста, размножения, подготовки к зиме, которые получили название годичных или сезонных ритмов. Эти ритмы проявляются в изменении интенсивности характера биологических процессов и повторяются с годичной периодичностью. Совпадение периодов жизненного цикла с соответствующим временем года имеет огромное значение для существования вида. Сезонные ритмы обеспечивают растениям и животным наиболее благоприятные условия для роста и развития.

Более того, физиологические процессы растений и животных находятся в строгой зависимости от суточной ритмичности, что выражается определенными биологическими ритмами. Следовательно, биологические ритмы - это периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. У растений биологические ритмы проявляются в суточном движении листьев, лепестков, изменении фотосинтеза, у животных - в колебании температуры, изменении секреции гормонов, скорости деления клеток и т. д. У человека также наблюдаются суточные колебания частоты дыхания, пульса, артериального давления, бодрствования и сна и др. Биологические ритмы являются наследственно закрепленными реакциями, поэтому познание их механизмов имеет важное значение при организации труда и отдыха человека.

Температура

Один из важнейших абиотических факторов, от которого в значительной степени зависит существование, развитие и распространение организмов на Земле [показать] .

Верхним температурным пределом жизни на Земле, вероятно, является 50-60°С. При таких температурах происходит потеря активности ферментов и свертывание белка. Однако общий температурный диапазон активной жизни на планете значительно шире и ограничивается следующими пределами (табл. 1)

Таблица 1. Температурный диапазон активной жизни на планете, °С

Среди организмов, способных существовать при очень высоких температурах, известны термофильные водоросли, которые могут жить в горячих источниках при 70-80°С. Успешно переносят очень высокие температуры (65-80°С) накипные лишайники, семена и вегетативные органы пустынных растений (саксаул, верблюжья колючка, тюльпаны), находящиеся в верхнем слое раскаленной почвы.

Существует немало видов животных и растений, выдерживающих большие значения минусовых температур. Деревья и кустарники в Якутии не вымерзают при минус 68°С. В Антарктиде при минус 70°С живут пингвины, а в Арктике - белые медведи, песцы, полярные совы. Полярные воды с температурой от 0 до -2°С населены разнообразными представителями растительного и животного мира - микроводорослями, беспозвоночными, рыбами, жизненный цикл которых постоянно происходит в таких температурных условиях.

Значение температуры состоит прежде всего в непосредственном ее влиянии на скорость и характер протекания реакций обмена веществ в организмах. Поскольку суточные и сезонные колебания температур возрастают по мере удаления от экватора, растения и животные, приспосабливаясь к ним, проявляют различную потребность в тепле.

Способы приспособления

  • Миграция - переселение в более благоприятные условия. Регулярно в течение года мигрируют киты, многие виды птиц, рыб, насекомых и других животных.
  • Оцепенение - состояние полной неподвижности, резкое снижение жизнедеятельности, прекращение питания. Наблюдается у насекомых, рыб, земноводных, млекопитающих при понижении температуры среды осенью, зимой (зимняя спячка) или при повышении ее летом в пустынях (летняя спячка).
  • Анабиоз - состояние резкого угнетения жизненных процессов, когда видимые проявления жизни временно прекращаются. Это явление обратимое. Отмечается у микробов, растений, низших животных. Семена некоторых растений в анабиозе могут находиться до 50 лет. Микробы в состоянии анабиоза образуют споры, простейшие - цисты.

Многие растения и животные при соответствующей подготовке успешно переносят в состоянии глубокого покоя или анабиоза предельно низкие температуры. В лабораторных экспериментах семена, пыльца, споры растений, нематоды, коловратки, цисты простейших и других организмов, сперматозоиды после обезвоживания или помещения в растворы специальных защитных веществ - криопротекторов - переносят температуры, близкие к абсолютному нулю.

В настоящее время достигнуты успехи по практическому использованию веществ с криопротекторными свойствами (глицерин, полиэтиленоксид, диметилсульфоксид, сахароза, маннит и др.) в биологии, сельском хозяйстве, медицине. В растворах криопротекторов осуществляется длительное хранение консервированной крови, спермы для искусственного осеменения сельскохозяйственных животных, некоторых органов и тканей для трансплантации; защита растений от зимних морозов, ранневесенних заморозков и т. п. Оказанные проблемы относятся к компетенции криобиологии и криомедицины и решаются многими научными учреждениями.

  • Терморегуляция. У растений и животных в процессе эволюции выработались различные механизмы терморегуляции:
  1. у растений
    • физиологический - накопление в клетках сахара, за счет которого повышается концентрация клеточного сока и снижается обводненность клеток, что способствует морозоустойчивости растений. Например, у карликовой березы, можжевельника верхние ветви при чрезмерно низкой температуре омертвевают, а стелющиеся перезимовывают под снегом и не погибают.
    • физический
      1. устьичная транспирация - отведения избытка тепла и предотвращение ожогов путем выведения воды (испарения) из тела растения
      2. морфологический - направленный на предотвращение перегрева: густая опушенность листьев для рассеивания солнечных лучей, глянцевитая поверхность для их отражения, уменьшение поглощающей лучи поверхности - свертывание листовой пластинки в трубочку (ковыль, овсяница), расположение листа ребром к солнечным лучам (эвкалипт), редуцирование листвы (саксаул, кактус); направленный на предотвращение замерзания: особые формы роста - карликовость, образование стелющихся форм (зимовка под снегом), темная окраска (помогает лучше поглощать тепловые лучи и нагреваться под снегом)
  2. у животных
    • холоднокровных (пойкилотермных, эктотермных) [беспозвоночные, рыбы, земноводные и пресмыкающиеся] - регуляция температуры тела осуществляется пассивно за счет усиления мышечной работы, особенностей структуры и цвета покровов, отыскивания мест, где возможно интенсивное поглощение солнечных лучей, и т.д., т.к. они не могут поддерживать температурный режим обменных процессов и их активность зависит главным образом, от тепла, поступающего извне, а температура тела - от значений температуры окружающей среды и энергетического баланса (соотношения поглощения и отдачи лучистой энергии).
    • теплокровных (гомойотермных, эндотермных) [птицы и млекопитающие] - способны поддерживать постоянную температуру тела независимо от температуры среды. Это свойство дает возмоность многим видами животных жить и размножаться при температуре ниже нуля (северный олень, белый медведь, ластоногие, пингвины). В процессе эволюции у них выработались два механизма терморегуляции, с помощью которых они поддерживают постоянную температуру тела: химический и физический [показать] .
      • Химический механизм терморегуляции обеспечивается скоростью и интенсивностью окислительно-восстановительных реакций и контролируется рефлекторно центральной нервной системой. Важную роль в повышении эффективности химического механизма терморегуляции сыграли такие ароморфозы, как появление четырехкамерного сердца, совершенствование органов дыхания у птиц и млекопитающих.
      • Физический механизм терморегуляции обеспечивается появлением теплоизолирующих покровов (перья, мех, подкожно-жировая клетчатка), потовых желез, органов дыхания, а также развитием нервных механизмов регуляции кровообращения.

      Частным случаем гомойотермии является гетеротермия - разный уровень температуры тела в зависимости от функциональной активности организма. Гетеротермия свойственна животным, впадающим в неблагоприятный период года в спячку или временное оцепенение. При этом высокая температура их тела заметно снижается за счет замедленного обмена веществ (суслики, ежи, летучие мыши, птенцы стрижей и др.).

Пределы выносливости больших значений температурного фактора различны как у пойкилотермных, так и у гомойотермных организмов.

Эвритермные виды способны переносить колебания температуры в широких пределах.

Стенотермные организмы живут в условиях узких пределов температуры, подразделяясь на теплолюбивые стенотермные виды (орхидеи, чайный куст, кофе, кораллы, медузы и др.) и на холодолюбивые (кедровый стланик, предледниковая и тундровая растительность, рыбы полярных бассейнов, животные абиссали - области наибольших океанических глубин и т. п.).

Для каждого организма или группы особей существует, оптимальная зона температуры, в пределах которой деятельность выражена особенно хорошо. Выше этой зоны находится зона временного теплового оцепенения, еще выше - зона продолжительной бездеятельности или летней спячки, граничащая с зоной высокой летальной температуры. При понижении последней ниже оптимума находится зона холодового оцепенения, зимней спячки и летальной низкой температуры.

Распределение особей в популяции в зависимости от изменения температурного фактора по территории подчиняется в целом такой же закономерности. Зоне оптимальных температур соответствует наибольшая плотность популяции, а по обе стороны от нее наблюдается снижение плотности вплоть до границы ареала, где она наименьшая.

Температурный фактор на большой территории Земли подвержен резко выраженным суточным и сезонным колебаниям, что в свою очередь обусловливает соответствующий ритм биологических явлений в природе. В зависимости от обеспеченности тепловой энергией симметричных участков обоих полушарий земного шара, начиная от экватора, различают следующие климатические зоны:

  1. Тропическая зона . Минимальная среднегодовая температура превышает 16° C, в самые прохладные дни не опускается ниже 0° C. Колебания температуры во времени незначительны, амплитуда не превышает 5° C. Вегетация круглогодичная.
  2. Субтропическая зона . Средняя температура самого холодного месяца не ниже 4° C, а самого теплого - выше 20° C. Минусовые температуры редки. Устойчивый снежный покров зимой отсутствует. Вегетационный период продолжается 9-11 мес.
  3. Умеренная зона . Хорошо выражены летний вегетационный сезон и зимний период покоя растений. В основной части зоны устойчивый снежный покров. Весной и осенью типичны заморозки. Иногда эта зона подразделяется на две: умеренно теплую и умеренно холодную, для которых характерно четыре времени года.
  4. Холодная зона . Среднегодовая темлература ниже О° C, заморозки возможны даже в течение короткого (2-3 мес) вегетационного периода. Очень велико годовое колебание температуры.

Закономерность вертикального размещения растительности, почв, животного мира в горных районах обусловлена главным образом также температурным фактором. В горах Кавказа, Индии, Африки можно выделить четыре-пять растительных поясов, последовательность которых снизу вверх отвечает последовательности широтных зон от экватора к полюсу на одной и той же высоте.

Влажность

Экологический фактор, характеризующийся содержанием воды в воздухе, почве, живых организмах. В природе существует суточный ритм влажности: она повышается ночью и понижается днем. Вместе с температурой и светом влажность играет важную роль в регуляции активности живых организмов. Источником воды для растений и животных служат главным образом атмосферные осадки и подземные воды, а также роса и туман.

Влага - необходимое условие существования всех живых организмов на Земле. В водной среде зародилась жизнь. Обитатели суши и поныне зависимы от воды. Для многих видов животных и растений вода продолжает оставаться средой обитания. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, выступает важнейшим исходным, промежуточным и конечным продуктом биохимических превращений. Значимость воды определяется и ее количественным содержанием. Живые организмы состоят не менее чем на 3/4 из воды.

По отношению к воде высшие растения делятся на

  • гидрофиты - водные растения (кувшинка, стрелолист, ряска);
  • гигрофиты - обитатели избыточно увлажненных мест (аир, вахта);
  • мезофиты - растения нормальных условий влажности (ландыш, валериана, люпин);
  • ксерофиты - растения, живущие в условиях постоянного или сезонного дефицита влаги (саксаул, верблюжья колючка, эфедра) и их разновидности суккуленты (кактусы, молочаи).

Приспособления к обитанию в обезвоженной среде и среде с периодическим недостатком влаги

Важной особенностью основных климатических факторов (света, температуры, влажности) является их закономерная изменчивость в течение годичного цикла и даже суток, а также в зависимости от географической зональности. В связи с этим приспособления живых организмов также имеют закономерный и сезонный характер. Приспособление организмов к условиям среды может быть быстрым и обратимым или довольно медленным, что зависит от глубины воздействия фактора.

В результате жизнедеятельности организмы способны изменять абиотические условия жизни. Например, растения низшего яруса оказываются в условиях меньшей освещенности; процессы распада органических веществ, которые происходят в водоемах, часто вызывают дефицит кислорода для других организмов. За счет деятельности водных организмов изменяется температурный и водный режимы, количество кислорода, углекислого газа, рН среды, спектральный состав света и др.

Воздушная среда и ее газовый состав

Освоение воздушной среды организмами началось после выхода их на сушу. Жизнь в воздушной среде потребовала специфических приспособлений и высокого уровня организации растений и животных. Низкая плотность и оводненность, высокое содержание кислорода, легкость перемещения воздушных масс, резкие перепады температуры и т. п. заметно сказались на процессе дыхания, водообмене и передвижении живых существ.

Подавляющее большинство наземных животных в ходе эволюции приобрели способность к полету (75 % всех видов наземных животных). Для многих видов характерна ансмохория - расселение с помощью воздушных потоков (споры, семена, плоды, цисты простейших, насекомые, пауки и т. п.). Некоторые растения стали ветроопыляемыми.

Для успешного существования организмов важны не только физические, но и химические свойства воздуха, содержание в нем нужных для жизни газовых компонентов.

Кислород. Для абсолютного большинства живых организмов кислород жизненно необходим. В бескислородной среде могут развиваться только анаэробные бактерии. Кислород обеспечивает осуществление экзотермических реакций, в ходе которых освобождается необходимая для жизнедеятельности организмов энергия. Он является конечным акцептором электрона, который отщепляется от атома водорода в процессе энергетического обмена.

В химически связанном состоянии кислород входит в состав многих очень важных органических и минеральных соединений живых организмов. Огромна его роль как окислителя в круговороте отдельных элементов биосферы.

Единственными продуцентами свободного кислорода на Земле являются зеленые растения, которые образуют его в процессе фотосинтеза. Определенное количество кислорода образуется в результате фотолиза паров воды ультрафиолетовыми лучами за пределами озонового слоя. Поглощение организмами кислорода из внешней среды происходит всей поверхностью тела (простейшие, черви) или специальными органами дыхания: трахеями (насекомые), жабрами (рыбы), легкими (позвоночные).

Кислород химически связывается и переносится по всему организму специальными пигментами крови: гемоглобином (позвоночные), гемоциапином (моллюски, ракообразные). У организмов, пребывающих в условиях постоянного недостатка кислорода, выработались соответствующие приспособления: повышенная кислородная емкость крови, более частые и глубокие дыхательные движения, большой объем легких (у жителей высокогорья, птиц) или уменьшение использования кислорода тканями благодаря повышению количества миоглобина - аккумулятора кислорода в тканях (у обитателей водной среды).

Вследствие высокой растворимости СО 2 и О 2 в воде относительное их содержание здесь выше (в 2-3 раза), чем в воздушной среде (рис. 1). Это обстоятельство очень важно для гидробионюв, использующих либо растворенный кислород для дыхания, либо СО 2 для фотосинтеза (водные фототрофы).

Углекислый газ. Нормальное количество этого газа в воздухе невелико - 0,03 % (по объему) или 0,57 мг/л. Вследствие этого даже небольшие колебания в содержании СО 2 существенно отражаются па непосредственно зависящем от него процессе фотосинтеза. Главные источники поступления СО 2 в атмосферу - дыхание животных и растений, процессы горения, извержения вулканов, деятельность почвенных микроорганизмов и грибов, промышленные предприятия и транспорт.

Обладая свойством поглощения в инфракрасной области спектра, углекислый газ влияет на оптические параметры и температурный режим атмосферы, обусловливая известный "парниковый эффект".

Важным экологическим аспектом является повышение растворимости кислорода и углекислого газа в воде по мере уменьшения ее температуры. Именно поэтому фауна водных бассейнов полярных и приполярных широт очень обильна и разнообразна, главным образом за счет повышенной концентрации в холодной воде кислорода. Растворение кислорода в воде, как и любого другого газа, подчиняется закону Генри: оно обратно пропорционально температуре и прекращается при достижении точки кипения. В теплых водах тропических бассейнов пониженная концентрация растворенного кислорода ограничивает дыхание, а следовательно, и жизнедеятельность и численность водных животных.

В последнее время наблюдается заметное ухудшение кислородного режима многих водоемов, вызванное увеличением количества органических загрязнителей, деструкция которых требует большого количества кислорода.

Зональность распространения живых организмов

Географическая (широтная) зональность

В широтном направлении с севера на юг на территории РФ последовательно располагаются такие природные зоны: тундра, тайга, лиственный лес, степь, пустыня. Среди элементов климата, которые определяют зональность размещения и распространения организмов, ведущую роль играют абиотические факторы - температура, влажность, световой режим.

Наиболее заметно зональные изменения проявляются в характере растительности - ведущем компоненте биоценоза. Это в свою очередь сопровождается изменениями состава животных - потребителей и деструкторов органических остатков звеньев цепей питания.

Тундра - холодная, безлесная равнина северного полушария. Климатические условия ее мало пригодны для вегетации растений и разложения органических остатков (вечная мерзлота, относительно низкая температура даже летом, короткий период плюсовых температур). Тут сформировались своеобразные малочисленные по видовому составу (мхи, лишайники) биоценозы. Продуктивность биоценоза тундры в связи с этим малая: 5-15 ц/га органического вещества в год.

Зона тайги характеризуется относительно благоприятными почвенно-климатическими условиями, особенно для хвойных пород. Тут сформировались богатые и высокопродуктивные биоценозы. Ежегодное образование органического вещества составляет 15-50 ц/га.

Условия умеренной зоны привели к формированию сложных биоценозов лиственных лесов с самой высокой на территории РФ их биологической продуктивностью (до 60 ц/га в год). Разновидностями лиственных лесов являются дубравы, буково-кленовые, смешанные леса и др. Такие леса характеризуются хорошо развитым кустарниковым и травянистым подлесками, что способствует размещению разнообразной по видам и количеству фауны.

Степи - природная зона умеренного пояса полушарий Земли, которая характеризуется недостаточным водообеспечением, поэтому тут преобладает травянистая, преимущественно злаковая растительность (ковыль, типчак и др.). Животный мир разнообразен и богат (лисица, заяц, хомяк, мыши, много птиц, особенно перелетных). В степной зоне размещены важнейшие районы производства зерна, технических, овощных культур и животноводства. Биологическая продуктивность этой природной зоны относительно велика (до 50 ц/га в год).

Пустыни преобладают в Средней Азии. Вследствие незначительного количества осадков и высокой температуры летом растительность занимает менее половины территории этой зоны и имеет специфические приспособления к засушливым условиям. Животный мир разнообразен, его биологические особенности рассматривались раньше. Ежегодное образование органической массы в зоне пустынь не превышает 5 ц/га (рис. 107).

Соленость среды

Соленость водной среды характеризуется содержанием в ней растворимых солей. В пресной воде содержится 0,5-1,0 г/л, а в морской - 10-50 г/л солей.

Соленость водной среды имеет важное значение для ее обитателей. Существуют животные, приспособленные к обитанию только в пресной воде (карпообразные) или только в морской (сельдеобразные). У некоторых же рыб отдельные стадии индивидуального развития проходят при различной солености воды, например угорь обыкновенный обитает в пресных водоемах, а на нерест мигрирует в Саргассово море. Таким водным обитателям необходима соответствующая регуляция солевого баланса в организме.

Механизмы регуляции ионного состава организмов .

Сухопутные животные вынуждены регулировать солевой состав своих жидких тканей для поддержания внутренней среды в постоянном или почти постоянном химически неизмененном ионном состоянии. Основной способ поддерживать солевой баланс у гидробионтов и сухопутных растений - избегать местообитаний с неподходящей соленостью.

Особенно напряженно и безошибочно должны работать такие механизмы у мигрирующих рыб (лосося, кеты, горбуши, угря, осетра), которые периодически переходят из морской воды в пресную или наоборот.

Проще всего происходит осмотическая регуляция в пресной воде. Известно, что в последней концентрация ионов значительно меньше, чем в жидких тканях. Согласно законам осмоса внешняя среда по концентрационному градиенту через полупроницаемые мембраны поступает внутрь клеток, происходит как бы "разведение" внутреннего содержимого. Если бы такой процесс не контролировался, организм мог бы разбухнуть и погибнуть. Однако пресноводные организмы имеют органы, которые выводят наружу лишнюю воду. Сохранению необходимых для жизнедеятельности ионов способствует то, что моча у таких организмов довольно разбавленная (рис. 2, а). Отделение такого разведенного раствора от внутренних жидкостей, вероятно, требует активной химической работы специализированных клеток или органов (почек) и потребления ими значительной доли общей энергии основного обмена.

Наоборот, морские животные и рыбы пьют и усваивают только морскую воду, пополняя тем самым постоянный выход ее из организма во внешнюю среду, которая характеризуется высоким осмотическим потенциалом. При этом одновалентные ионы соленой воды активно выводятся наружу жабрами, а двухвалентные - почками (рис. 2, б). На откачку избыточной воды клетки затрачивают довольно много энергии, поэтому при возрастании солености и уменьшении воды в теле организмы обычно переходят к неактивному состоянию - солевому анабиозу. Это свойственно видам, обитающим в периодически пересыхающих лужах морской воды, лиманах, на литорали (коловратки, бо-коплавы, жгутиковые и др.)

Соленость верхнего слоя земной коры определяется содержанием в ней ионов калия и натрия, и также, как и соленость водной среды, имеет важное значение для ее обитателей и, в первую очередь, растений, которые имеют к ней соответствующую приспособленность. Этот фактор для растений не случаен, он сопровождает их в течение эволюционного процесса. К почвам с высоким содержанием калия и натрия приурочена так называемая солончаковая растительность (солянка, солодка и др.).

Верхний слой земной коры - это почва. Кроме солености почвы различают другие ее показатели: кислотность, гидротермический режим, аэрация почвы и т.п. В совокупности с рельефом эти свойства земной поверхности, получившие название эдафические факторы среды, оказывают экологическое воздействие на ее обитателей.

Эдафические факторы среды

Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей.


заимствовано

Почвенный профиль

Тип почвы определяется ее составом и цветом.

A - Тундровая почва имеет темную торфянистую поверхность.

B - Пустынная почва светлая, крупнозерниста и бедна органическим веществом

Каштановая почва (С) и чернозем (D) - богатые перегноем луговые почвы, типичные для степей Евразии и прерий Северной Америки.

Красноватый выщелоченный латосол (Е)тропической саванны имеет очень тонкий, но богатый перегноем слой.

Подзолистые почвы типичны для северных широт, где выпадает большое количество осад ков, а испарение очень мало. Они включают богатый органическими веществами коричневый лесной подзол (F), серо-коричневый подзол (Н) и серо-каменистый подзол (I), на котором произрастают как хвойные, так и лиственные деревья. Все они относительно кислые, и в отличие от них красно-желтый подзол (G) сосновых лесов достаточно сильно выщелочен.

В зависимости от эдафических факторов можно выделить ряд экологических групп растений.

По реакции на кислотность почвенного раствора различают:

  • ацидофильные виды, растущие при рН ниже 6,5 (растения торфяных болот, хвощ, сосна, пихта, папоротник);
  • нейтрофильные, предпочитающие почву с нейтральной реакцией (рН 7) (большинство культурных растений);
  • базифильные - растения, которые лучше всего растут на субстрате, имеющем щелочную реакцию (рН более 7) (ель, граб, туя)
  • и индифферентные - могут произрастать на почвах с разным значением рН.

По отношению к химическому составу почвы растения делятся на

  • олиготрофные, малотребовательные к количеству питательных веществ;
  • мезотрофные, требующие умеренного количества минеральных веществ в почве (травянистые многолетники, ель),
  • мезотрофные, нуждающиеся в большом количестве доступных зольных элементов (дуб, плодовые).

По отношению к отдельным элементам питания

  • виды, особенно требовательные к высокому содержанию азота в почве, называются - нитрофилами (крапива, растения скотных дворов);
  • требующие много кальция - кальцефилами (бук, лиственница, порезник, хлопчатник, маслина);
  • растения засоленных почв называются галофитами (солянка, сарсазан), излишек солей некоторые из галофитов способны выделять наружу, где эти соли после высыхания образуют твердые пленки или кристаллические скопления

По отношению к механическому составу

  • растений сыпучих песков - псаммофиты (саксаул, акация песчаная)
  • растений каменистых осыпей, трещин и углублений скал и других подобных местообитаний - литофиты [петрофиты] (можжевельник, дуб скальный)

Рельеф местности и характер грунта существенно влияют на специфику передвижения животных, на распределение видов, жизнедеятельность которых временно или постоянно связана с почвой. От гидротермического режима почв, их аэрации, механического и химического составов зависят характер корневой системы (глубинная, поверхностная), образ жизни почвенной фауны. Химический состав почвы и разнообразие обитателей влияют на ее плодородие. Наиболее плодородными являются черноземные почвы, богатые перегноем.

Как абиотический фактор рельеф оказывает влияние на распределение климатических факторов и, таким образом, на формирование соответствующих флоры и фауны. Например, на южных склонах холмов или гор всегда более высокая температура, лучшая освещенность и соответственно меньшая влажность.

В абиотической части среды обитания (в неживой природе) все факторы прежде всего можно разделить на физические и химические. Однако для понимания сути рассматриваемых явлений и процессов абиотические факторы удобно представить совокупностью климатических, топографических, космических факторов, а также характеристик состава среды (водной, наземной или почвенной) и др.

Свет является одним из важнейших абиотических факторов, особенно для фотосинтезирующих зеленых растений. Только на свету осуществляется важнейший в биосфере процесс - фотосинтез . Свет влияет на скорость роста и развития растений, на интенсивность фотосинтеза, на активность животных, вызывает изменение влажности и температуры среды, является важным фактором, обеспечивающим суточные и сезонные биологические циклы. Каждые местообитание характеризуется определенным световым режимом, определяемым интенсивностью (силой), количеством и качеством света. Интенсивность света измеряется энергией, приходящейся на единицу площади в единицу времени; количество света определяется суммарной радиацией.

По отношению к свету как экологическому фактору различают следующие группы растений : гелиофиты, сциофиты и факультативные гелиофиты. Гелиофиты (светолюбивые) - обитают на открытых местах с хорошей освещенностью и в лесной зоне встречаются редко (подсолнечник, козлобородник и др). Сциофиты (теневые растений) - не выносят освещения и живут под пологом леса в постоянной тени (лесные травы, папоротники, мхи). Факультативные гелиофиты (теневыносливые) - могут жить при хорошем освещении, но легко переносят и затемненные места (большинство растений лесов, луговые растения, кустарники)

Одним из наиболее важных факторов, определяющих существование развитие и распространение организмов является температура. Важно не только абсолютное количество тепла, по и его временное распределение, т.е. тепловой режим. Растения не обладают собственной температурой тела: их анатомо - морфологические и физиологические механизмы терморегуляции направлены на защиту организма от вредного воздействия температур. К физиологическим приспособлениям растений, сглаживающим вредные влияние высоких и низких температур, можно отнести: интенсивность испарения - транспирацию, накопление в клетках солей хлорофилла препятствовать проникновению солнечных лучей.


Температура главным образом связана с солнечным излучением, но в ряде случаев определяется энергией геотермальных источников. При температуре ниже точки замерзания живая клетка физически повреждается образующимися кристаллами льда и гибнет, а при высоких температурах происходит денатурацияферментов. Абсолютное большинство растений и животных не выдерживает отрицательных температур тела. Верхний температурный предел жизни редко поднимается выше 40-45 °С.

В диапазоне между крайними границами скорость ферментативных реакций (следовательно, и интенсивность обмена веществ) удваивается с повышением температуры на каждые 10 °С. Значительная часть организмов способна контролировать (поддерживать) температуру тела, причем в первую очередь наиболее жизненно важных органов. Такие организмы называют гомойотермными — теплокровными (от греч. homoios — подобный, therme — теплота) (млекопитающие, птицы), в отличие от пойкилотермных — холоднокровных (от греч. poikilos — различный, переменчивый, разнообразный), имеющих непостоянную температуру, зависящую от температуры окружающей среды (растения, земноводные)

Организмы, для жизни которых требуется условия, ограниченные узким диапазоном толерантности по величине температуры, называют стенотермными, а способных жить в широком диапазоне температур - эвритермными.

Вода обязательна для жизни на Земле, в экологическом плане она уникальна. Вода является важнейшим экологическим фактором в жизни живых организмов и их постоянной составной частью. По отношению к водному режиму выделяют следующие экологические группы растений и животных: влаголюбивые, сухолюбивые и предпочитающие умеренную влажность.

В зависимости от способов адаптации растений к влажности выделяют несколько экологических групп:

- гидатофиты - водные растения, целиком или большей частью своей погруженные в воду (ряска, элодея);

- гидрофиты - наземно-водные растения, погруженные в воду только нижними частями (стрелолист, частуха);

- гигрофиты — наземные растения, живущие в очень влаж-ных почвах и в условиях повышенной влажности;

- мезофиты — переносят незначительную засуху (древесные растения различных климатических зон, травянистые растения дубрав, большинство культурных растений);

- ксерофиты — растения сухих степей и пустынь, способные накапливать влагу в мясистых листьях и стеблях — суккуленты (алоэ, кактусы), а также обладающие большой всасывающей силой корней и способные снижать транспирацию с узкими мелкими листьями — склерофиты.

Среди наземных животных различают:

Гидрофилы - влаголюбивые животные (мокрицы, комары, наземные молюски); мезофилы - обитают в районах с умеренной влажностью (многие насекомые, птицы, млекопитающие);

Ксерофилы - это сухолюбивые животные, не переносящие высокой влажности (верблюди, пустынные грызуны, пресмыкающиеся).

Эдафические факторы - это свойства почвы как экологический фактор, оказывающий воздействие на животные организмы, живущие в них и на корневую систему растений. Очень важный фактор для многих животных и растений - реакция среды (рН). Засоленными называют почвы с избыточным содержанием водорастворимых солей (хлоридов, сульфатов, карбонатов).

Флора и фауна засоленных почв весьма специфична. Растения здесь устойчивы не только к концентрации, но и к составу солей, но разные растения приспособлены по разному. Солеустойчивые растения - галофиты, например солерос может выдержать концентрацию солей свыше 20 %, а в тоже время дождевые черви даже при невысокой степени засоления длительный срок выдержать его не могут.

Топографические факторы

Рельеф относится к орографическим факторам и тесно связана с другими абиотическими факторами, хотя и не принадлежащим к таким прямодействующим экологическим факторам, как свет, тепло, вода и почва. Главным топографическим (орографическим) фактором является высота.

Основной топографический фактор — высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастает количество осадков, скорость ветра и интенсивность радиации, понижается давление. Рельеф местности — один из главных факторов, влияющих на перенос, рассеивание или накопление примесей в атмосферном воздухе.

Выводы

Таким образом, живые организмы воздействие среды воспринимают через посредство факторов среды, которые называются экологическими. Экологические факторы - это определенные условия и элементы среды, которые оказывают специфическое воздействие на организм. Они подразделяются на абиотические, биотические и антропогенные.

Один и тот же фактор на разные организмы может оказывать оптимальное воздействие при различных значениях. Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма, называется оптимумом, а дающая наихудший эффект - пессимумом.

Способность организмов выносить отклонения значений экологических факторов называется толерантностью, которая может иметь к разным фактором не одинаковый диапазон диапазон выносливости (терпимости).Организм может иметь приспособленность к узкому диапазону одного фактора и широкому диапазону - другого свойство видов адаптироваться к тому или иному диапазону факторов среды называется экологической пластичностью.

Разделы: Биология

Класс: 9

Цель : раскрыть особенности абиотических факторов среды и рассмотреть их влияние на живые организмы.

Задачи : познакомить учащихся с экологическими факторами среды; раскрыть особенности абиотических факторов, рассмотреть влияние температуры, света и увлажнения на живые организмы; выделить различные группы живых организмов в зависимости от влияния на них разных абиотического фактора; выполнить практическое задание по определению групп организмов, в зависимости от абиотического фактора.

Оборудование : компьютерная презентация, задания по группам с картинками растений и животных, практическое задание.

ХОД УРОКА

Все живые организмы, населяющие Землю, испытывают влияние экологических факторов среды.

Экологические факторы – это отдельные свойства или элементы среды, воздействующие прямо или косвенно на живые организмы, хотя бы на протяжении одной из стадий индивидуального развития. Экологические факторы многообразны. Существует несколько квалификаций, в зависимости от подхода. Это по влиянию на жизнедеятельность организмов, по степени изменчивости во времени, по длительности действия. Рассмотрим классификацию экологических факторов, основанную на их происхождении.

Мы рассмотрим влияние первых трех абиотических факторов среды, так как их влияние более значительно – это температура, свет и влажность.

Например, у майского жука личиночная стадия проходит в почве. На него влияют абиотические факторы среды: почва, воздух, косвенно влажность, химический состав почвы – совсем не влияет свет.

Например, бактерии способны выжить в самых экстремальных условиях – их находят в гейзерах, сероводородных источниках, очень соленой воде, на глубине Мирового океана, очень глубоко в почве, во льдах Антарктиды, на самых высоких вершинах (даже Эвересте 8848 м), в телах живых организмов.

ТЕМПЕРАТУРА

Большинство видов растений и животных приспособлены к довольно узкому диапазону температур. Некоторые организмы, особенно в состоянии покоя или анабиоза способны выдерживать довольно низкие температуры. Колебание температуры в воде обычно меньше, чем на суше, поэтому пределы устойчивости к температуре у водных организмов хуже, чем у наземных. От температуры зависит интенсивность обмена веществ. В основном организмы живут при температуре от 0 до +50 на поверхности песка в пустыни и до – 70 в некоторых областях Восточной Сибири. Средний диапазон температур находится в пределах от +50 до –50 в наземных местообитаниях и от +2 до +27 – в Мировом океане. Например, микроорганизмы выдерживают охлаждение до –200, отдельные виды бактерий и водорослей могут жить и размножаться в горячих источниках при температуре + 80, +88.

Различают животные организмы :

  1. с постоянной температурой тела (теплокровные);
  2. с непостоянной температурой тела (хладнокровные).

Организмы с непостоянной температурой тела (рыбы, земноводные, пресмыкающиеся)

В природе температура не постоянна. Организмы, которые живут в умеренных широтах и подвергаются колебанию температур, хуже переносят постоянную температуру. Резкие колебания – зной, морозы – неблагоприятны для организмов. Животные выработали приспособления для борьбы с охлаждением и перегревом. Например, с наступлением зимы растения и животные с непостоянной температурой тела впадают в состояние зимнего покоя. Интенсивность обмена веществ у них резко снижается. При подготовке к зиме в тканях животных запасается много жира, углеводов, количество воды в клетчатке уменьшается, накапливаются сахара, глицерин, препятствующий замерзанию. Так морозостойкость зимующих организмов увеличивается.

В жаркое время года наоборот, включаются физиологические механизмы, защищающие от перегрева. У растений усиливается испарение влаги через устьица, что приводит к снижению температуры листьев. У животных усиливается испарение воды через дыхательную систему и кожу.

Организмы с постоянной температурой тела. (птицы, млекопитающие)

У этих организмов произошли изменения во внутреннем строении органов, что способствовало их приспособленности к постоянной температуре тела. Это, например – 4-х камерное сердце и наличие одной дуги аорты, обеспечивающие полное разделение артериального и венозного кровотока, интенсивный обмен веществ благодаря снабжению тканей артериальной кровью, насыщенной кислородом, перьевой или волосяной покров тела, способствующий сохранению тепла, хорошо развитая нервная деятельность). Все это позволило представителям птиц и млекопитающим сохранять активность при резких перепадах температур и освоить все места обитания.

В природных условиях температура очень редко держится на уровне благоприятности для жизни. Поэтому у растений и животных возникает специальные приспособления, которые ослабляют резкие колебания температуры. У животных, например слонов большая ушная раковина, по сравнению с его предком мамонтом, живущем в холодном климате. Ушная раковина кроме органа слуха выполняет функцию терморегулятора. У растений для защиты от перегрева появляется восковой налет, плотная кутикула.

СВЕТ

Свет обеспечивает все жизненные процессы, протекающие на Земле. Для организмов важна длина волны воспринимаемого излучения, его продолжительность и интенсивность воздействия. Например, у растений уменьшение длины светового дня и интенсивность освещения приводит к осеннему листопаду.

По отношению к свету растения делят на:

  1. светолюбивые – имеют мелкие листья, сильно ветвящиеся побеги, много пигмента – хлебные злаки. Но увеличение интенсивности освещения сверх оптимального подавляет фотосинтез, поэтому в тропиках трудно получать хорошие урожаи.
  2. тенелюбивы е – имеют тонкие листья, крупные, расположены горизонтально, с меньшим количеством устьиц.
  3. теневыносливые – растения способные обитать в условиях хорошего освещения, так и в условиях затенения

Важную роль в регуляции активности живых организмов и их развитии играет продолжительность и интенсивность воздействие света – фотопериод. В умеренных широтах цикл развития животных и растений приурочен к сезонам года, и сигналом для подготовки к изменению температуры служит продолжительность светового дня, которая в отличии от других факторов всегда остается постоянной в определенном месте и в определенное время. Фотопериодизм – это пусковой механизм, включающий физиологические процессы, приводящие к росту и цветению растений весной, плодоношению летом, сбрасыванию листьев осенью у растений. У животных к накоплению жира к осени, размножению животных, их миграции, перелету птиц и наступлению стадии покоя у насекомых. (Сообщение учащихся).

Кроме сезонных, есть еще и суточные изменения режима освещенности, смена дня и ночи определяет суточный ритм физиологической активности организмов. Важное приспособление, которое обеспечивает выживание особи – это своего рода «биологические часы», способность ощущать время.

Животные , активность которых зависит от времени суток , бывают с дневным, ночным и сумеречным образом жизни.

ВЛАЖНОСТЬ

Вода – это необходимый компонент клетки, поэтому ее количество в тех или иных местах обитания является ограничивающим фактором для растений и животных и определяет характер флоры и фауны данной местности.

Избыток влаги в почве приводит к заболачиванию почвы и появлению болотной растительности. В зависимости от влажности почвы (количество осадков) видовой состав растительности меняется. Широколиственные леса сменяются мелколиственными, затем лесостепной растительностью. Далее низкотравье, и при 250 мл в год – пустыня. Осадки в течении года могут выпадать не равномерно, живым организмам приходится переносить длительные засухи. Например, растения и животные саванн, где интенсивность растительного покрова, а так же и интенсивное питание копытных животных зависит от сезона дождей.

В природе происходят и суточные колебания влажности воздуха, которые влияют на активность организмов. Между влажностью и температурой есть тесная связь. Температура сильнее влияет на организм при влажность высокая или низкая. У растений и животных появились приспособления к разной влажности. Например, у растений – развита мощная корневая система, утолщена кутикула листа, листовая пластинка уменьшена или превращена в иголки и колючки. У саксаула фотосинтез идет зеленой частью стебля. Рост в период засухи у растений прекращается. Кактусы запасают влагу в расширенной части стебля, иголки вместо листьев уменьшают испарение.

У животных тоже появились приспособленности, позволяющих переносить недостаток влаги. Мелкие животные – грызуны, змеи, черепахи, членистоногие – добывают влагу из пищи. Источником воды может стать жироподобное вещество например у верблюда. В жаркое время некоторые животные – грызуны, черепахи впадают в спячку, продолжавшуюся несколько месяцев. Растения – эфемеры к началу лета, после кратковременного цветения, могут сбрасывать листья, отмирать наземные части и так переживать период засухи. При этом до следующего сезона сохраняются луковицы, корневища.

По отношению к воде растения делят:

  1. водные растения повышенной влажности;
  2. околоводные растения, наземно-водные;
  3. наземные растения;
  4. растения сухих и очень сухих мест, обитают в местах с недостаточным увлажнениям, могут переносить непродолжительную засуху;
  5. суккуленты – сочные, накапливают воду в тканях своего тел.

По отношению к воде животных делят:

  1. влаголюбивые животные;
  2. промежуточная группа;
  3. сухолюбивые животные.

Виды приспособленностей организмов к колебаниям температуры, влажности и света:

  1. теплокровность поддержание организмом постоянной температуры тела;
  2. зимняя спячка – продолжительныйсон животных в зимнее время года;
  3. анабиоз – временное состояние организма, при котором жизненные процессы замедленны до минимума и отсутствуют все видимые признаки жизни (наблюдается у холоднокровных и у животных зимой и в жаркий период времени);
  4. морозостойкост ь – способность организмов переносить отрицательные температуры;
  5. состояние покоя – приспособительное свойство многолетнего растения, для которого характерно прекращение видимого роста и жизнедеятельности, отмирание наземных побегов у травянистых форм растений и опадение листьев у древесных форм;
  6. летний покой – приспособительное свойство раннецветущих растений (тюльпан, шафран) тропических районов, пустынь, полупустынь.

(Сообщения учащихся.)

Сделаем вывод, на все живые организмы, т.е. на растения и животные действуют абиотические факторы среды (факторы неживой природы), особенно температура, свет и увлажненность. В зависимости от влияния факторов неживой природы, растения и животных делят на различные группы и у них появляются приспособленности к влиянию этих абиотических факторов.

Практические задания по группам: (Приложение 1)

1. ЗАДАНИЕ: Из перечисленных животных назовите хладнокровных (т.е. с непостоянной температурой тела).

2. ЗАДАНИЕ: Из перечисленных животных назовите теплокровных (т.е. с постоянной температурой тела).

3. ЗАДАНИЕ: выберите из предложенных растений те, которые являются светолюбивыми, тенелюбивыми и теневыносливыми и запишите в таблицу.

4. ЗАДАНИЕ: выберите животных, ведущих дневной, ночной и сумеречный образ жизни.

5. ЗАДАНИЕ: выберите растения, относящиеся к разным группам по отношению к воде.

6. ЗАДАНИЕ: выберите животных, относящихся к разным группам по отношению к воде.

Задания по теме «абиотические факторы среды», ответы (


Самое обсуждаемое
Что значит крылатые. Крылатые выражения. Примеры из произведений. Срывание всех и всяческих масок Что значит крылатые. Крылатые выражения. Примеры из произведений. Срывание всех и всяческих масок
Герберт УэллсВойна миров Герберт УэллсВойна миров
Уральский ученый рассказал, когда в нас врежется большой астероид и что с этим делать Спасти планету от астероида Уральский ученый рассказал, когда в нас врежется большой астероид и что с этим делать Спасти планету от астероида


top