Как было получено множество комплексных чисел. §1. Комплексные числа: основные определения. Геометрическая интерпретация комплексного числа

Как было получено множество комплексных чисел. §1. Комплексные числа: основные определения. Геометрическая интерпретация комплексного числа

§1. Комплексные числа

1°. Определение. Алгебраическая форма записи.

Определение 1 . Комплексными числами называются упорядоченные пары действительных чисел и , если для них определены понятие равенства, операции сложения и умножения, удовлетворяющие следующим аксиомам:

1) Два числа
и
равны тогда и только тогда, когда
,
, т.е.


,
.

2) Суммой комплексных чисел
и

и равное
, т.е.


+
=
.

3) Произведением комплексных чисел
и
называется число, обозначаемое
и равное , т.е.

∙=.

Множество комплексных чисел обозначаетсяC .

Формулы (2),(3) для чисел вида
принимают вид

откуда следует, что операции сложения и умножения для чисел вида
совпадают со сложением и умножением для вещественных чисел  комплексное число вида
отождествляется с вещественным числом .

Комплексное число
называется мнимой единицей и обозначается , т.е.
Тогда из (3) 

Из (2),(3)  что и значит

Выражение (4) называется алгебраической формой записи комплексного числа.

В алгебраической форме записи операции сложения и умножения принимают вид:

Комплексное число обозначают
, – вещественная часть, – мнимая часть, – чисто мнимое число. Обозначение:
,
.

Определение 2 . Комплексное число
называется сопряженным с комплексным числом
.

Свойства комплексного сопряжения.

1)

2)
.

3) Если
, то
.

4)
.

5)
– вещественное число.

Доказательство проводится непосредственным вычислением.

Определение 3 . Число
называется модулем комплексного числа
и обозначается
.

Очевидно, что
, причем


. Также очевидны формулы:
и
.

2°. Свойства операций сложения и умножения.

1) Коммутативность:
,
.

2) Ассоциативность:,
.

3) Дистрибутивность: .

Доказательство 1) – 3) проводится непосредственными вычислениями на основе аналогичных свойств для вещественных чисел.

4)
,
.

5) , C ! , удовлетворяющее уравнению
. Такое

6) ,C , 0, ! :
. Такое находится умножением уравнения на



.

Пример. Представим комплексное число
в алгебраической форме. Для этого умножим числитель и знаменатель дроби на число, сопряженное знаменателю. Имеем:

3°. Геометрическая интерпретация комплексных чисел. Тригонометрическая и показательная форма записи комплексного числа.

Пусть на плоскости задана прямоугольная система координат. Тогда
C можно поставить в соответствие точку на плоскости с координатами
.(см. рис. 1). Очевидно, что такое соответствие является взаимно однозначным. При этом действительные числа лежат на оси абсцисс, а чисто мнимые ­− на оси ординат. Поэтому ось абсцисс называют действительной осью , а ось ординат − мнимой осью . Плоскость, на которой лежат комплексные числа, называется комплексной плоскостью .

Отметим, что и
симметричны относительно начала координат, а и симметричны относительно Ox.

Каждому комплексному числу (т.е. каждой точке на плоскости) можно поставить в соответствие вектор с началом в точке O и концом в точке
. Соответствие между векторами и комплексными числами является взаимно однозначным. Поэтому вектор, соответствующий комплексному числу , обозначается той же буквой

Длина вектора
соответствующего комплексному числу
, равна
, причем
,
.

С помощью векторной интерпретации можно видеть, что вектор
− сумма векторов и , а
− сумма векторов и
.(см. рис. 2). Поэтому справедливы неравенства: ,

Наряду с длиной вектора введем в рассмотрение угол между вектором и осью Ox, отсчитываемый от положительного направления оси Ox: если отсчет ведется против часовой стрелки, то знак величина угла рассматривается положительной, если по часовой стрелке – то отрицательной. Этот угол называется аргументом комплексного числа и обозначается
. Угол определяется не однозначно, а с точностью
… . Для
аргумент не определяется.

Формулы (6) задают так называемую тригонометрическую форму записи комплексного числа.

Из (5) следует, что если
и
то

,
.

Из (5)
что по и комплексное число определяется однозначно. Обратное неверно: а именно, по комплексному числу его модуль находится однозначно, а аргумент, в силу (7), − с точностью
. Также из (7) следует, что аргумент может быть найден как решение уравнения

Однако не все решения этого уравнения являются решениями (7).

Среди всех значений аргумента комплексного числа выбирается одно, которое называется главным значением аргумента и обозначается
. Обычно главное значение аргумента выбирается либо в интервале
, либо в интервале

В тригонометрической форме удобно производить операции умножения и деления.

Теорема 1. Модуль произведения комплексных чисел и равен произведению модулей, а аргумент – сумме аргументов, т.е.

, а .

Аналогично

,

Доказательство. Пусть , . Тогда непосредственным умножением получаем:

Аналогично

.■

Следствие (формула Муавра). Для
справедлива формула Муавра

Пример. Пусть Найдем геометрическое местоположение точки
. Из теоремы 1 следует, что .

Поэтому для ее построение необходимо вначале построить точку , являющуюся инверсией относительно единичной окружности, а затем найти точку, симметричную ей относительно оси Ox.

Пусть
, т.е.
Комплексное число
обозначается
, т.е. R справедлива формула Эйлера

Так как
, то
,
. Из теоремы 1
что с функцией
можно работать как с обычной показательной функцией, т.е. справедливы равенства

,
,
.

Из (8)
показательная форма записи комплексного числа

, где
,

Пример. .

4°. Корни -ой степени из комплексного числа.

Рассмотрим уравнение

,
С ,
N .

Пусть
, а решение уравнения (9) ищется в виде
. Тогда (9) принимает вид
, откуда находим, что
,
, т.е.

,
,
.

Таким образом, уравнение (9) имеет корни

,
.

Покажем, что среди (10) имеется ровно различных корней. Действительно,

различны, т.к. их аргументы различны и отличаются меньше, чем на
. Далее,
, т.к.
. Аналогично
.

Таким образом, уравнение (9) при
имеет ровно корней
, расположенных в вершинах правильного -угольника, вписанного в окружность радиуса с центром в т. O.

Таким образом, доказана

Теорема 2. Извлечение корня -ой степени из комплексного числа
всегда возможно. Все значения корня -ой степени из расположены в вершинах правильного -угольника, вписанного в окружность с центром в нуле и радиуса
. При этом,

Следствие. Корни –ой степени из 1 выражаются формулой

.

Произведение двух корней из 1 является корнем, 1 – корень -ой степени из единицы, корня
:
.

Напомним необходимые сведения о комплексных числах.

Комплексное число - это выражение вида a + bi , где a , b - действительные числа, а i - так называемая мнимая единица , символ, квадрат которого равен –1, то есть i 2 = –1. Число a называется действительной частью , а число b - мнимой частью комплексного числа z = a + bi . Если b = 0, то вместо a + 0i пишут просто a . Видно, что действительные числа - это частный случай комплексных чисел.

Арифметические действия над комплексными числами те же, что и над действительными: их можно складывать, вычитать, умножать и делить друг на друга. Сложение и вычитание происходят по правилу (a + bi ) ± (c + di ) = (a ± c ) + (b ± d )i , а умножение - по правилу (a + bi ) · (c + di ) = (ac bd ) + (ad + bc )i (здесь как раз используется, что i 2 = –1). Число = a bi называется комплексно-сопряженным к z = a + bi . Равенство z · = a 2 + b 2 позволяет понять, как делить одно комплексное число на другое (ненулевое) комплексное число:

(Например, .)

У комплексных чисел есть удобное и наглядное геометрическое представление: число z = a + bi можно изображать вектором с координатами (a ; b ) на декартовой плоскости (или, что почти то же самое, точкой - концом вектора с этими координатами). При этом сумма двух комплексных чисел изображается как сумма соответствующих векторов (которую можно найти по правилу параллелограмма). По теореме Пифагора длина вектора с координатами (a ; b ) равна . Эта величина называется модулем комплексного числа z = a + bi и обозначается |z |. Угол, который этот вектор образует с положительным направлением оси абсцисс (отсчитанный против часовой стрелки), называется аргументом комплексного числа z и обозначается Arg z . Аргумент определен не однозначно, а лишь с точностью до прибавления величины, кратной 2π радиан (или 360°, если считать в градусах) - ведь ясно, что поворот на такой угол вокруг начала координат не изменит вектор. Но если вектор длины r образует угол φ с положительным направлением оси абсцисс, то его координаты равны (r · cos φ ; r · sin φ ). Отсюда получается тригонометрическая форма записи комплексного числа: z = |z | · (cos(Arg z ) + i sin(Arg z )). Часто бывает удобно записывать комплексные числа именно в такой форме, потому что это сильно упрощает выкладки. Умножение комплексных чисел в тригонометрической форме выглядит очень просто: z 1 · z 2 = |z 1 | · |z 2 | · (cos(Arg z 1 + Arg z 2) + i sin(Arg z 1 + Arg z 2)) (при умножении двух комплексных чисел их модули перемножаются, а аргументы складываются). Отсюда следуют формулы Муавра : z n = |z | n · (cos(n · (Arg z )) + i sin(n · (Arg z ))). С помощью этих формул легко научиться извлекать корни любой степени из комплексных чисел. Корень n-й степени из числа z - это такое комплексное число w , что w n = z . Видно, что , а , где k может принимать любое значение из множества {0, 1, ..., n – 1}. Это означает, что всегда есть ровно n корней n -й степени из комплексного числа (на плоскости они располагаются в вершинах правильного n -угольника).

Тема Комплексные числа и многочлены

Лекция 22

§1. Комплексные числа: основные определения

Символ вводят соотношением
и называют мнимой единицей. Другими словами,
.

Определение. Выражение вида
, где
, называется комплексным числом, при этом числоназывают вещественной частью комплексного числаи обозначают
, число– мнимой частьюи обозначают
.

Из такого определения следует, что действительные числа – это те комплексные числа, мнимая часть которых равна нулю.

Комплексные числа удобно изображать точками плоскости, на которой задана декартова прямоугольная система координат, а именно: комплексному числу
соответствует точка
и наоборот. На оси
изображаются вещественные числа и её называют вещественной осью. Комплексные числа вида

называют чисто мнимыми. Они изображаются точками на оси
, которую называют мнимой осью. Эту плоскость, служащую для изображения комплексных чисел, называют комплексной плоскостью. Комплексное число, не являющееся действительным, т.е. такое, что
, иногда называют мнимым.

Два комплексных числа называют равными тогда и только тогда, когда у них совпадают как вещественные, так и мнимые части.

Сложение, вычитание и умножение комплексных чисел производится по обычным правилам алгебры многочленов с учётом того, что

. Операцию деления можно определить как обратную к операции умножения и доказать единственность результата (если делитель отличен от нуля). Однако на практике используется другой подход.

Комплексные числа
и
называют сопряжёнными, на комплексной плоскости они изображаются точками, симметричными относительно вещественной оси. Очевидно, что:

1)

;

2)
;

3)
.

Теперь разделить наможно следующим образом:

.

Не трудно показать, что

,

где символ обозначает любую арифметическую операцию.

Пусть
некоторое мнимое число, а – вещественная переменная. Произведение двух биномов

есть квадратный трёхчлен с действительными коэффициентами.

Теперь, имея в распоряжении комплексные числа, мы сможем решить любое квадратное уравнение
.Если , то

и уравнение имеет два комплексных сопряжённых корня

.

Если
, то уравнение имеет два различных вещественных корня. Если
, то уравнение имеет два одинаковых корня.

§2. Тригонометрическая форма комплексного числа

Как говорилось выше, комплексное число
удобно изображать точкой
. Можно также такое число отождествлять с радиус-вектором этой точки
. При такой интерпретации сложение и вычитание комплексных чисел производится по правилам сложения и вычитания векторов. Для умножения и деления комплексных чисел более удобной оказывается другая форма.

Введём на комплексной плоскости
полярную систему координат. Тогда, где
,
и комплексное число
можно записать в виде:

Эту форму записи называют тригонометрической (в отличие от алгебраической формы
). В этой форме числоназывают модулем, а– аргументом комплексного числа. Они обозначаются:
,

. Для модуля имеем формулу

Аргумент числа определён неоднозначно, а с точностью до слагаемого
,
. Значение аргумента, удовлетворяющего неравенствам
, называется главным и обозначается
. Тогда,
. Для главного значения аргумента можно получить такие выражения:

,

аргумент числа
считается неопределённым.

Условие равенства двух комплексных чисел в тригонометрической форме имеет вид: модули чисел равны, а аргументы отличаются на число кратное
.

Найдём произведение двух комплексных чисел в тригонометрической форме:

Итак, при умножении чисел их модули умножаются, а аргументы складываются.

Аналогичным образом можно установить, что при делении модули чисел делятся, а аргументы вычитаются.

Понимая возведение в степень как многократное умножение, можно получить формулу возведения комплексного числа в степень:

Выведем формулу для
– корня-ой степени из комплексного числа(не путать с арифметическим корнем из действительного числа!). Операция извлечения корня является обратной по отношению к операции возведения в степень. Поэтому
– это комплексное числотакое, что
.

Пусть
известно, а
требуется найти. Тогда

Из равенства двух комплексных чисел в тригонометрической форме следует, что

,
,
.

Отсюда
(это арифметический корень!),

,
.

Нетрудно убедиться, что может принимать лишьразличных по существу значений, например, при
. Окончательно имеем формулу:

,
.

Итак, корень -ой степени из комплексного числа имеетразличных значений. На комплексной плоскости эти значения располагаются в вершинах правильно-угольника, вписанного в окружность радиуса
с центром в начале координат. “Первый” корень имеет аргумент
, аргументы двух “соседних” корней отличаются на
.

Пример. Извлечём корень кубический из мнимой единицы:
,
,
. Тогда:

,

В течение последних двухсот лет комплексные числа находят многочисленные, а иногда и совершенно неожиданные применения. Так, например, с помощью комплексных чисел Гаусс на­шел ответ на чисто геометрический вопрос: при каких натуральных n циркулем и линейкой можно по­строить правильный n-угольник? Из школьного кур­са геометрии известно, как циркулем и линейкой по­строить некоторые правильные многоугольники: правильный треугольник, квадрат, правильный шестиугольник (его сторона равна радиусу описан­ной около него окружности). Более сложным являет­ся построение правильных пятиугольника и пятнадцатиугольника. Научившись строить эти правильные многоугольники, легко перейти к построению соответ­ствующих многоугольников с удвоенным числом сторон: восьмиугольника, десятиугольника и т. п. Все эти задачи на построение были решены еще в Древней Греции. Однако, несмотря на огромные усилия мно­гих замечательных древнегреческих геометров и дру­гих ученых, никому не удалось построить ни правиль­ный семиугольник, ни правильный девятиугольник. Не удалось также осуществить построение пра­вильного р-угольника ни при каком простом числе р, кроме p = 3 и p = 5. Более двух тысяч лет никто не мог продвинуться в решении этой проблемы. В 1796 г. Карл Фридрих Гаусс, 19-летний студент-математик Геттингенского университета, впервые доказал воз­можность построения правильного семнадцатиугольника с помощью циркуля и линейки. Это было одно из самых удивительных открытий в истории матема­тики. В течение нескольких последующих лет Гаусс полностью решил проблему построения правильных n-угольников.

Гаусс доказал, что правильный N–угольник с не­четным числом сторон (вершин) может быть по­строен с помощью циркуля и линейки тогда и только тогда, когда число N является простым числом Ферма или произведением нескольких различных простых чисел Ферма. (Числами Ферма называют числа вида F n = + 1 · Приn = 0, 1, 2, 3, 4 эти числа являются простыми, при n = 5 число F 5 будет состав­ным. Из этого результата следовало, что построение правильного многоугольника невоз­можно при N = 7, 9, 11, 13.

Легко заметить, что задача о построении пра­вильного n-угольника равносильна задаче о делении окружности радиуса R = 1 на n равных частей. Выше было показано, что корень n-й степени из единицы имеет точно n значений; почти все эти значения (за исключением одного, двух) являются комплексны­ми. Точки, изображающие корни n-й степени из еди­ницы, располагаются на окружности радиуса R = 1 и делят ее на n равных дуг, т. е. являются вершина­ми правильного n-угольника, вписанного в эту окруж­ность (см. рис. 3). При доказательстве возможности построения правильного 17-угольника Гаусс поль­зовался свойствами корней 17-й степени из единицы.

В XVIII в. возникла новая область математики – теория функций комплексной переменной. Введем по­нятие такой функции. Рассмотрим две комплексные переменные z = x + i y и w = u + i v, где x, y, u, v – действительные переменные, i = - мнимая еди­ница. Зафиксируем две комплексные плоскостиOxy (плоскость z), O"uv (плоскость w) с выбранными на них системами прямоугольных координат и два множества на этих плоскостях: D и D" соответствен­но (рис. 4).

D "

D

Если каждой точке zD по некоторому закону f ставится в соответствие единственная точка wD", то говорят, что w есть функция от z и пишут: w = f(z). Множество D в этом случае называют об­ластью определения функции w = f(z), значения кото­рой принадлежат области D". Если множество значе­ний f(z) исчерпывает все множество D", то D" называ­ют множеством значений (областью изменения) функции f(z). B таком случае пишут: D"= f(D). Мно­жества D и D" можно изображать на одной комплекс­ной плоскости. Каждое из множеств D и D" может совпадать со всей плоскостью.

Таким образом, каждая комплексная функция реализует однозначное в одну сторону отображение одного множества на другое. Благодаря этому комплексные функции находят важные применения таких науках, как гидродинамика и аэродинами­ка, поскольку с их помощью удобно описывать дви­жение объема жидкости (или газа).

С помощью теории функций комплексной пере­менной доказана следующая важная теорема, которую долгое время называли основной теоремой алгебры.

Теорема: Всякий многочлен с любыми число­выми коэффициентами, степень которого не меньше единицы, имеет хотя бы один корень, в общем случае комплексный.

Рассмотрим многочлен степени n (n ≥ 1):

f(x) = a 0 x n + a 1 x n -1 + … + a n -1 x + a n . (36)

Корнем многочлена называют такое число с (в об­щем случае комплексное: с = a + bi ), которое обра­щает данный многочлен в нуль:

a 0 c n + a 1 c n-1 + … + a n-1 c + a n ≡ 0.

Другими словами, теорема утверждает, что алге­браическое уравнение n-й степени (n ≥ 1)

a 0 x n + a 1 x n -1 + … + a n -1 x + a n = 0 37)

имеет хотя бы один корень.

Отсюда следует, что любое алгебраическое урав­нение n-й степени имеет ровно n корней. Действи­тельно, если многочлен f(х) = a 0 x n + a 1 x n -1 + … + a n -1 x + a n , имеет корень α 1 , то его можно пред­ставить в виде f(х) = (х – α 1)φ 1 (x), где φ 1 (x) – много­член степени n – 1. Этот многочлен по данной теоре­ме имеет хотя бы один корень. Обозначим корень многочлена φ 1 (x) через α 2 , тогда φ 1 (x) = (х – α 2)φ 2 (x), где φ 2 (x) – многочлен степени n – 2. Продолжая аналогичные рассуждения, находим, что f(x) = a 0 (x – a 1)(x – a 2)...(x – a n). Отсюда видно, что f(α i) = 0 при i – 1, 2, ... , n, т. е. α i - корни многочлена (36) или уравнения (37). Таким образом, уравне­ние (37) имеет n корней.

Отметим, что комплексные корни всякого много­члена с действительными коэффициентами всегда сопряжены: если с = a - bi – корень уравнения, то с = а-bi – также корень данного уравнения. Ины­ми словами, комплексные корни такого многочлена входят парами во множество его корней. Отсюда следует, что любое алгебраическое уравнение не­четной степени имеет хотя бы один действительный корень.

Замечание . Не всякое уравнение имеет корни, действительные или комплексные. Например, транс­цендентное (неалгебраическое) уравнение а x = 0 (а > 0) не имеет никаких корней (ни действительных, ни комплексных).

Простейшим примером функции комплексной переменной является линейная функция w = z + c, где с – постоянная (комплексное число). Эта функ­ция осуществляет преобразование плоскости z на плоскость w. Каждой точке z она ставит в соответ­ствие точку w = z + с. Очевидно, от точки z можно перейти к точке w путем сдвига (параллельного пе­реноса) на вектор с , т. е. посредством перемещения точки z по направлению вектора с на расстояние, равное длине этого вектора (рис. 5). Путем подхо­дящего выбора числа с можно получить любой сдвиг. Например, если точку z нужно сдвинуть в положи­тельном направлении оси Ox на две единицы, то надо взять с = 2; точка w = z + 2 будет искомой (рис. 6). Если же точку z нужно сдвинуть в отрицательном направлении оси Oy на три единицы, то берем c = -3i ; точка w"= z + (-3i ) = z – 3i будет искомой (рис. 6). Итак, функция w = z + c осуществляет преобразование (отображение) плоскости, которое называют сдвигом на вектор с .

w = z + c

w = z + 2

w" = z – 3 i

Геометрическое преобразование, при котором ве­личины углов между любыми двумя линиями, содер­жащимися в преобразуемой фигуре, не изменяются, называют конформным преобразованием или кон­формным отображением . (Под углом между двумя линиями, пересекающимися в некоторой точке, по­нимают угол между касательными к этим линиям, проведенными в этой точке.) Примерами конформ­ных отображений могут служить сдвиг (параллель­ный перенос), гомотетия и поворот. Таким образом, можно сказать, что функция w = z + с осуществляет конформное отображение; это одна из таких функций.

Теория функций комплексной переменной находит широкое применение при решении важных практи­ческих задач картографии, электротехники, тепло­проводности и др. Во многих вопросах, где речь идет, например, об электрическом потенциале в точ­ках пространства, окружающего заряженный кон­денсатор, или о температуре внутри нагретого тела, о скоростях частиц жидкости или газа в потоке, дви­жущемся в некотором канале и обтекающем при этом некоторые препятствия, и т. п., нужно уметь находить потенциал, температуру, скорости и т. п. Задачи такого рода могут быть решены без особых затруд­нений в случае, когда встречающиеся в них тела имеют простую форму (например, в виде плоских пластин или круговых цилиндров). Однако расчеты необходимо уметь производить и во многих других случаях. Например, чтобы сконструировать самолет, надо уметь вычислять скорости частиц в потоке, обтекающем крыло самолета. Разумеется, при полете самолета движутся и частицы воздуха, и само крыло. Однако, опираясь на законы механики, исследование можно свести к случаю, когда крыло неподвижно, а на него набегает и обтекает его поток воздуха. Крыло самолета в поперечном разрезе, (профиль крыла) имеет вид, показанный на рисунке 7. Расчет ско­ростей производится достаточно просто, когда по­перечный разрез обтекаемого тела есть круг (т. е. само тело является круглым цилиндром). Чтобы свести задачу о скоростях частиц потока воздуха, обтекающего крыло самолета, к более простой задаче обтекания круглого цилиндра, достаточно конформно отобразить часть плоскости, заштрихованную на ри­сунке 7, а (вне крыла), на другую фигуру, заштрихо­ванную на рисунке 7, б (вне круга). Такое ото­бражение осуществляется с помощью некоторой фун­кции комплексной пере­менной. Знание этой фун­кции позволяет перейти от скоростей в потоке, обте­кающем круглый цилиндр, к скоростям в потоке, об­текающем крыло самоле­та, и тем самым полностью решить поставленную задачу.

Конформное отображение, заданное соответствующей функцией комплексной переменной, аналогичным образом позволяет сводить решение задач о расчете электрического потенциала и температур от случая тел произвольной формы (любого профиля сечения) к простейшим случаям, для которых задачи решается легко.

Русский и советский ученый H. E. Жуковский (1847–1921) успешно применял теорию функций комплексной переменной к решению важных при­кладных задач. Так, методами этой теории он доказал основную теорему о подъемной силе крыла самолета. В. И. Ленин назвал H. E. Жуковского «отцом русской авиации». В одном из своих высту­плений H. E. Жуковский говорил: «...человек не имеет крыльев и по отношению веса своего тела к весу мускулов он в 72 раза слабее птицы; ...он почти и 800 раз тяжелее воздуха, тогда как птица тяжелее воздуха в 200 раз. Но, я думаю, что он полетит, опираясь не на силу своих мускулов, а на силу своего разума». (Жуковский H.E. Собрание сочи­нений. – М. – Л.: Гостехиздат, 1950. –T. 7. – С. 16.) С помощью теории функций комплексной перемен­ной H.E. Жуковский решал задачи, относящиеся к вопросам просачивания воды через плотины.

Список використаної літератури:

    “Алгебра” С. Ленг Издательство МИР, Москва, 1968

    “Кольца и модули” Ламбек, Иохаим. Издательство МИР, Москва, 1971

    “Кольца(Элементы теории)”, Михалевич Ш. Х. Издательство Даугавпилоского педагогического института, 1973

    “Алгебра: кольца, модулы и категории” Фейс К., Издательство МИР, 1977

    “Кольца и модули. Предельные теоремы теории вероятности” Издательство ЛГУ, 1986

    “Теория колец”, Джекобсон Н.. Государственное издательство иностранной литературы, Москва, 1947.


Самое обсуждаемое
Словарь морфем С одним н
 пишется суффикс
 -ин
-
 в прилагательных, например: соловьиный, куриный, гостиный, а также в существительном гостиница Словарь морфем С одним н пишется суффикс -ин - в прилагательных, например: соловьиный, куриный, гостиный, а также в существительном гостиница
Виды связи предложений в тексте Виды связи предложений в тексте
Анализ японских свечей – сборник фигур разворота Анализ японских свечей – сборник фигур разворота


top