Оборудование для реабилитации. Медицинская робототехника Концепция разработки и внедрения роботов в восстановительной медицине для здоровых людей

Оборудование для реабилитации. Медицинская робототехника Концепция
разработки и внедрения роботов в
восстановительной медицине для здоровых
людей

мэйнстрим

О.В. ЧЕРЧЕНКО,

научный сотрудник ФГБНУ «Дирекция НТП», г. Москва, Россия, [email protected]

С.А. ШЕПТУНОВ,

д.т.н., директор ИКТИ РАН, г. Москва, Россия, [email protected]

РОБОТОАССИСТИРУЮЩАЯ ХИРУРГИЯ И РОБОТЫ-ЭКЗОСКЕЛЕТЫ ДЛЯ РЕАБИЛИТАЦИИ ЛЮДЕЙ С НАРУШЕНИЯМИ ОПОРНО-ДВИГАТЕЛЬНЫХ ФУНКЦИЙ: МИРОВЫЕ ТЕХНОЛОГИЧЕСКИЕ ЛИДЕРЫ И ПЕРСПЕКТИВЫ РОССИИ

Черченко О.В., Шептунов С.А. Роботоассистирующая хирургия и роботы-экзоскелеты для реабилитации людей с нарушениями опорно-двигательных функций: мировые технологические лидеры и перспективы России (ФГБНУ «Дирекция НТП», г. Москва, Россия; ИКТИ РАН, г. Москва, Россия)

Аннотация. Представлены результаты анализа публикационной и патентной активности по двум наиболее активно развивающимся направлениям отрасли медицинской робототехники: роботы-экзоскелеты для реабилитации людей с нарушениями опорно-двигательных функций, роботоассистирующая хирургия. Выявлено несоответствие структуры глобальных и национальных публикационного и патентного потоков. Отмечены недостатки зарубежных разработок по роботоассистирующей хирургии, которые создают предпосылки для продвижения импортозамещающих разработок отечественных инженеров.

Ключевые слова: роботоассистирующая хирургия, экзоскелеты для реабилитации людей с нарушениями опорно-двигательных функций, технологические лидеры, конкурентоспособность, наукометрический анализ, патентный анализ.

© О.В. Черченко,

С.А. Шептунов, 2015 г.

Медицинские роботы могут быть определены как электронно-механические устройства, которые частично или полностью выполняют функции человека или его отдельных органов и систем при решении различных медицинских задач . Еще в 1998 г. Джозеф Эндельбергер, американский инженер и предприниматель, создавший первую в мире частную фирму по производству программируемых автоматов и получивший за это титул «отца робототехники», представляя робота-помощни-ка HelpMate Trackless Robotic Courier, говорил о том, что больницы - это та самая окружающая среда, которая идеально подходит для использования роботов.

Роботы, вероятнее всего, смогут создать новую добавленную стоимость в здравоохранении с помощью:

1. сокращения стоимости труда за счет выполнения определенных операций не человеком, а робототехническими средствами;

2. социальной и экономической выгоды за счет увеличения самостоятельности и социальной активности людей, нуждающихся в специализированном уходе;

3. увеличения качества ухода, осуществляемого робототехническими системами (роботы могут выполнять более тонкие манипуляции и осуществлять повторяющиеся действия с большей степенью точности, чем человек);

4. выполнения операций, которые человек осуществить не может, в том числе в хирургии, из-за ограничений в размерах или не-

мэйнстрим

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Совокупный прогноз

Темп роста рынка

Рис. 1. Прогноз мирового рынка роботизированных хирургических систем (без учета систем для радиохирургии) (Источник: Wintergreen Research, BCC Research, Global Data)

обходимости повышенной точности выполняемых операций.

Медицинские устройства в стоимостном выражении занимают основную часть рынка профессиональных сервисных роботов. К этому сегменту относятся роботизированные хирургические комплексы, аппараты для лучевой терапии и устройства для реабилитации пациентов. По данным аналитического обзора РВК , объем продаж подобных устройств составил 1,45 млрд. долларов США, или 41% от стоимости всех профессиональных роботов, проданных в 2013 году, без учета военных систем.

В различных прогнозах объем глобального рынка медицинских робототехнических систем к 2018 г. оценивают в диапазоне от $13,6 млрд. до $18 млрд. , а к 2020 г. он, скорее всего, достигнет более чем $20 млрд. при темпах годового роста в 12-12.6%.

Ожидается, что хирургические роботы составят самую большую долю доходов.

По данным совокупного прогноза Winter-green Research, BCC Research, Global Data, предположительный объем рынка роботизированных хирургических систем (без учета комплектующих и расходных материалов,

без учета радиохирургии) к 2025 г. составит 6,6 млрд. долл. США (рис. 1).

Отдельным сектором на общем рынке медицинского оборудования станет рынок экзоскелетов, по которому ожидают еще больший рост. Согласно исследованию «Реабилитационные роботы: рынок акций,

стратегии и прогнозы по всему миру с 2015 по 2021 годы» от Wintergreen Research, опубликованному в Research and Markets, объем рынка медицинских реабилитационных роботов и механизмов в 2014 г. составлял $203,3 млн. и по прогнозам к 2021 г. достигнет прибыли в $1,1 млрд. .

Целью настоящего исследования являлось определение на основе данных многокритериальных наукометрического и патентного анализов основных трендов научно-технологического развития медицинской робототехники в мире, а также оценка конкурентоспособности научно-технологических заделов и позиции России на этом технологическом рынке на примере двух наиболее активно развивающихся направлений отрасли:

Роботы-экзоскелеты для реабилитации людей с нарушениями опорно-двигательных функций;

Роботоассистирующая хирургия.

мэйнстрим

N СО O" О CNCOtJ-LO"ONCOOsO-- счсо-^ю ОО-ООООООООООО-- I- I- I- I- I- OsOvOsOOOOOOOOOOOOOOOO |- |- |- CNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCN

Рис. 2. Динамика публикационной активности по направлению «технологии создания робота-экзоскелета для реабилитации людей с нарушениями опорно-двигательных функций»

(по данным Web of Science Core Collection на 25.03.2015 г.)

Анализ актуального уровня и трендов развития исследовательской активности по выделенным направлениям в мире и в России проводился с использованием одного из самых авторитетных источников аналитической информации о ключевых научных исследованиях в мире - международного индекса цитирования Web of Science Core Collection.

Для определения потенциала индустриализации исследуемых направлений и конкурентоспособности российских технологических заделов в данном исследовании использовалась авторская методология многокритериального патентного анализа рабочей группы под руководством Н.Г. Кураковой , которая включает оценку динамики патентной активности в мире по направлению, оценку распределения патентных документов по их статусу, оценку доли заявок на изобретения в сопоставлении с долей выданных патентов и другие показатели. Патентный анализ проводился с использованием патентных баз данных Orbit и Thomson Innovation.

Наукометрический и патентный анализы были выполнены за период с 1995 по 2015 гг.

Технологии создания робота-экзоскелета для реабилитации людей с нарушениями опорнодвигательных функций

Экзоскелет - внешний каркас, позволяющий облегчить человеку выполнение опорно-двигательных функций. В медицине так называют устройства, которые могли бы использовать люди с ограниченными физическими возможностями для обеспечения движения за счет поддержки, а также для регулярных тренировок, направленных на восстановление утраченной подвижности.

По данным международного индекса Web of Science Core Collection, объем публикаций по данному научному направлению экспоненциально растет (рис. 2).

Странами-лидерами по количеству статей в мире являются США, Китай, Италия. На долю России приходится лишь 0,1% общемирового публикационного потока.

Наблюдается экспоненциальный рост и патентной активности по исследуемому направлению в мире. Об этом свидетельствуют данные нашего анализа, выполненного с использованием двух патентных баз данных: Orbit (рис. 3) и Thomson Innovation (рис. 4).

Обращает на себя внимание рост количества заявок на изобретения, число которых превосходит количество действующих патентов, что является признаком большого потенциала развития технологического направления (рис. 5).

Драйверами направления являются США, Китай и Республика Корея - именно между этими странами, скорее всего, и развернется борьба за будущие нишевые рынки, созданные устройствами такого функционального назначения. Данные БД Orbit (рис. 6) и Thomson Innovation (рис. 7) визуализируют в проекции патентного анализа технологическое лидерство этих трех стран.

Россия находится на 11-м месте по количеству патентов, полученных резидентами страны, однако доля национальных патентов составляет всего 1% от общемировой по данному направлению (рис. 6).

Анализ распределения патентов по годам позволил зафиксировать смену мирового технологического лидера. Как следует из данных,

ЭКОНОМИКА НАУКИ 5015, Т. 1, № 2

мэйнстрим

Publication years

"ОГ^ООО"О"- C4CJ^fl"ONffl>0 - CN С"Э Ю

О"О"О"О^ОООООООООО--

O"O"O"OvOOOOOOOOOOOOOOOO

-->---CNCN(N

Рис. 3. Динамика патентной активности по направлению «технологии создания робота-экзоскелета для реабилитации людей с нарушениями опорнодвигательных функций» (по данным Orbit на 25.03.2015 г.)

Рис. 4. Динамика патентной активности по направлению «технологии создания робота-экзоскелета для реабилитации людей с нарушениями опорнодвигательных функций» (по данным Thomson Innovation на 13.04.2015 г.)

Рис. 5. Распределение патентных документов по правовому статусу по направлению «технологии создания робота-экзоскелета для реабилитации людей с нарушениями опорнодвигательных функций» (по данным Orbit на 25.03.2015 г.)

ЭКОНОМИКА НАУКИ 201 5, Т. 1, № 2

мэйнстрим

Страны приоритета

Рис. 6. Распределение патентов по направлению «технологии создания робота-экзоскелета для реабилитации людей с нарушениями опорнодвигательных функций» по странам приоритета (по данным Orbit на 25.03.2015 г.)

Рис. 7. Распределение патентов по направлению «технологии создания робота-экзоскелета для реабилитации людей с нарушениями опорнодвигательных функций» по странам приоритета (по данным Thomson Innovation на 13.04.2015 г.)

представленных на рис. 8, в развитии технологий создания робота-экзоскелета, начиная с 1996 г., принимали участие разработчики многих стран, внося соизмеримые вклады в его индустриализацию. Однако, согласно данным Thomson Innovation, в 2012 г. Китай выходит на первое место по общему количеству патентов, полученных резидентами страны. Активность патентования корейских технологий также стремительно нарастает, начиная с 2005 г. (рис. 8).

Данные патентного анализа, полученные с использованием БД Orbit, позволяют отметить ту же закономерность в смене технологического лидера: до 2006 г. в развитии технологий создания робота-экзоскелета принимают участие несколько индустриально

развитых стран, особенно выделяется исследовательская и изобретательская активность США. Однако с 2006 г. Китай начинает наращивать активность патентования национальных технических решений и становится очевидным мировым технологическим лидером к 2012 г. Республика Корея также демонстрирует рост патентной активности с 2007 г. К сожалению, научно-технологические заделы России в течение 2007-2013 гг. не отражены и не защищены сколько-нибудь заметным числом патентов (рис. 9).

Среди патентов РФ по технологиям создания робота-экзоскелета 65% выданы резидентам страны, более трети патентов РФ получены нерезидентами (рис. 10).

ЭКОНОМИКА НАУКИ 5015, Т. 1, № 2

мэйнстрим

Рис. 8. Динамика патентной активности по направлению «технологии создания робота-экзоскелета для реабилитации людей с нарушениями опорнодвигательных функций» в разных странах по приоритету (по данным Thomson Innovation на 13.04.2015 г)

Рис. 9. Динамика патентной активности по направлению «технологии создания робота-экзоскелета для реабилитации людей с нарушениями опорнодвигательных функций» в разных странах по приоритету (по данным Orbit на 25.03.2015 г.)

Рис. 10. Динамика патентной активности резидентов РФ по направлению «технологии создания робота-экзоскелета для реабилитации людей с нарушениями опорнодвигательных функций» (по данным Orbit на 25.03.2015 г.)

ЭКОНОМИКА НАУКИ 201 5, Т. 1, № 2

мэйнстрим

Таблица 1

Топ 10 патентообладателей мира по направлению «технологии создания робота-экзоскелета для реабилитации людей с нарушениями опорно-двигательных функций»

Патентообладатели Количество патентов

ZHEJIANG UNIVERSITY 40

SHANGHAI JIAO TONG UNIVERSITY 25

UNIVERSITY OF ELECTRONIC SCIENCE & TECHNOLOGY OF CHINA 18

HARBIN INSTITUTE OF TECHNOLOGY 17

UNIVERSITY OF CALIFORNIA 14

SOGANG UNIVERSITY INDUSTRY-UNIVERSITY COOPERATION FOUNDATION 12

SOUTHWEST JIAOTONG UNIVERSITY 11

BEIJING UNIVERSITY OF TECHNOLOGY 10

UNIVERSITY OF SHANGHAI FOR SCIENCE & TECHNOLOGY 9

Источник: по данным базы Orbit на 25.03.2015 г.

В табл. 1 представлены топ 10 патентообладателей мира, имеющих самые крупные портфели патентов по направлению.

Большая часть патентов с российским приоритетом принадлежит Московскому государственному университету имени М.В. Ломоносова (45%).

Технологии роботоассистирующей хирургии

Роботоассистирующая хирургия - последнее достижение лапароскопической техники и малоинвазивной хирургии, подразумевающее наименьшую хирургическую травму и снижение болевых ощущений у пациента.

Существует целый ряд преимуществ роботоассистирующей хирургии, которые говорят о том, что широкое распространение технологии вывело бы хирургию в целом на новый уровень:

Принципиальное изменение работы хирурга с предоставлением большого спектра возможностей;

Улучшенная 3D-визуализация анатомических структур, особенно сосудисто-нервных пучков;

Обеспечение гарантии выполнения операций высокого качества молодыми специалистами после прохождения специализированного курса обучения;

Выполнение высококачественных операций в тех анатомических областях, где ранее было невозможно осуществить малоинвазивное вмешательство;

Отсутствие тремора, тщательное и «бережное» иссечение тканей;

Минимальная тракация и смещение соседних органов.

Публикационная активность по направлению «роботоассистирующая хирургия», согласно данным Web of Science Core Collection, стабильно растет в течение последних двадцати лет (рис. 11).

Публикационными лидерами являются США, Германия и Япония, доля российских публикаций составляет 0,1% от общемирового потока (41-е место в мире).

Активность патентования технологических решений по исследуемому направлению также экспоненциально растет, согласно данным базы Orbit (рис. 12) и базы Thomson Innovation (рис. 13).

Количество ежегодно выдаваемых патентов, начиная с 2009 г., исчисляется двумя сот-

ЭКОНОМИКА НАУКИ 5015, Т. 1, № 2

мэйнстрим

400 -350 -300 -250 -200 -

"ONCOO^O"-CNn"fin"ONCOO"O^Wn^iO

О"ОО-ООООООООООО--

O"O"OCNOOOOOOOOOOOOOOOO

CNCNCNCNCNCNCNCMCNCNCNCNCNCNCNCN

Рис. 11. Динамика публикационной активности по направлению «технологии роботоассистирующей хирургии»

(по данным Web of Science Core Collection на 24.03.2015 г.)

нями, а число подаваемых заявок на патенты растет экспоненциально (рис. 14).

К числу технологических лидеров направления следует отнести США, Республику Корею, Китай - об этом свидетельствуют данные базы Orbit (рис. 15) и данные патентного анализа, выполненного с использованием базы Thomson Innovation (рис. 16). США указаны в качестве страны приоритета в половине патентных документов, выданных по данному направлению. Доля патентов, полученных резидентами России, составляет всего 1,91% от общемирового числа патентных документов. С этим показателем РФ занимает 8-е место, однако отстает по этому показателю от Китая, занимающего третью позицию в рейтинге патентного портфолио, в 6,7 раза (рис. 15).

Рис. 12. Динамика патентной активности по направлению «технологии роботоассистирующей хирургии» (по данным Orbit на 24.03.2015 г.)

Рис. 13. Динамика патентной активности по направлению «технологии роботоассистирующей хирургии» (по данным Thomson Innovation на 13.04.2015 г.)

ЭКОНОМИКА НАУКИ 201 5, Т. 1, № 2

мэйнстрим

■ Недействующие ■ Заявки ■ Действующие

US WO KR CN DE ЕР JP RU GB FR СА IT ES AU UA Страны приоритета

Рис.14. Распределение патентных документов по правовому статусу по направлению «технологии роботоассистирующей хирургии» (по данным Orbit на 24.03.2015 г.)

Рис. 15. Распределение патентов по направлению «технологии роботоассистирующей хирургии» по странам приоритета (по данным Orbit на 24.03.2015г.)

Рис. 16. Распределение патентов по направлению «технологии роботоассистирующей хирургии» по странам приоритета (по данным Thomson Innovation на 13.04.2015 г.)

ЭКОНОМИКА НАУКИ 5015, Т. 1, № 2

мэйнстрим

Рис. 17. Динамика патентной активности по направлению «технологии роботоассистирующей хирургии» в разных странах по приоритету (по данным Thomson Innovation на 13.04.2015 г)

Рис. 18. Динамика патентной активности по направлению «технологии роботоассистирующей хирургии» в разных странах по приоритету (по данным Orbit на 24.03.2015 г.)

RU WO US ЕР СА IT ES KR DE FR

Страны приоритета

Рис. 19. Динамика патентной активности резидентов РФ по направлению «технологии роботоассистирующей хирургии» (по данным Orbit на 24.03.2015 г.)

ЭКОНОМИКА НАУКИ 201 5, Т. 1, № 2

мэйнстрим

Таблица 2

Топ 10 патентообладателей мира по направлению «технологии роботоассистирующей хирургии»

Количество

патентов

INTUITIVE SURGICAL 246

ETHICON ENDO SURGERY 45

SAMSUNG ELECTRONICS 39

HANSEN MEDICAL 39

JOHNS HOPKINS UNIVERSITY 30

DEUTSCH ZENTR LUFT & RAUMFAHRT 25

TIANJIN UNIVERSITY 24

OPERATIONS INTUITIVE SURGICAL 23

Источник: (по данным Orbit на 24.02.2015 г.)

По данным базы Thomson Innovation, США сохраняет лидерство как страна приоритета с 1995 г. по текущий момент. В Республике Корее первые патенты получены резидентами в 2006 г., резидентами Китая - в 2003 г., однако сегодня обе страны активно включились в борьбу за рынки устройств роботоассистирующей хирургии (рис. 17).

База Orbit визуализирует ту же тенденцию. Исследователи США демонстрируют стабильно высокую патентную активность по направлению за весь двадцатилетний период наблюдения, а с 2006 г. в борьбу за лидерство вступили Китай и Республика Корея. Россия, к сожалению, является страной приоритета для единичных патентов в период с 2002 по 2013 гг. (рис. 18).

Всего на решения в области технологий роботоассистирующей хирургии выдано 64 патента РФ, из которых 40 принадлежат российским заявителям. Распределение патентов РФ по странам приоритета (рис. 19) показывает, что на долю нерезидентов приходится 37,5% выданных в РФ патентов, большая часть которых выдана компаниям США.

В табл. 2 представлены топ 10 патентообладателей в мире по направлению роботоассистирующей хирургии. Абсолютным лидером среди них является компания Intuitive Surgical (США), ставшая разработчиком системы

«Da Vinci». Патентное портфолио компании сильно усложнило развитие рынка роботоассистирующей хирургии, поскольку закрыло принципиальные конструктивные решения и элементы хирургического робота. Но, как видно на примере Китая и Республики Кореи, новые технологические решения все же могут быть найдены и в условиях активно развертывающейся технологии с очевидным монополистом.

Компания Ethicon Endo Surgery, занимающая третью позицию рейтинга, получила 4 патента РФ.

Российские патентообладатели по направлению «технологии роботоассистирующей хирургии» представлены компаниями и университетами, имеющими по 1-2 патента.

Заключение

Представленные данные не позволяют охарактеризовать научно-технологические заделы РФ в области роботов-экзоскелетов для реабилитации людей с нарушениями опорно-двигательных функций и роботоассистирующей хирургии как конкурентоспособные. К сожалению, не удалось обнаружить патентов отечественных технологических компаний, свидетельствующих о готовности последних предлагать серийную продукцию не только на глобальный, но и на внутренний рынок.

ЭКОНОМИКА НАУКИ 5015, Т. 1, № 2

мэйнстрим

Между тем, темпы роста мировых рынков роботов-хирургов и роботов-экзоскеле-тов для реабилитации людей с нарушениями опорно-двигательных функций позволяют охарактеризовать их как новые и динамично растущие. Поэтому у российских разработчиков есть все шансы занять нишевые рынки. Необходимость новых российских разработок по роботизированной хирургии обусловлена и целым рядом недостатков в используемой в мире системе «Da Vinci»:

Отсутствие у хирурга тактильных ощущений;

Большой вес и габарит системы;

Длительный период подготовки к операции;

Отсутствие системы сопровождения до цели (места патологии);

Маленький угол обзора (отсутствие периферийного зрения) у оператора консоли хирурга;

Использование одного механизма для выполнения разных движений;

Длительная установка троакаров по сравнению со стандартными лапароскопическими операциями;

Отсутствие контакта с пациентом;

Отсутствие 3D-зрения у доктора, ассистирующего непосредственно возле пациента.

Кроме вышеперечисленных направлений технологического развития этих систем, следует особо отметить стоимостные характеристики системы «Da Vinci» и отдельных инструментов и аксессуаров (средняя стоимость одного комплекса - 3 млн. евро). Подготовка персонала к работе с системой возможна исключительно за рубежом. Большой проблемой являются техническая поддержка и обслуживание системы на территории России.

Все отмеченные недостатки создают отличные предпосылки для продвижения импортозамещающих разработок отечественных инженеров, а значит, включение технологий создания робота-экзоскелета для реабилитации людей с нарушениями опорно-двигательных функций и роботоассистирующей хирургии в число приоритетов научно-технологического развития России полностью обосновано.

ЛИТЕРАТУРА

1. Краевский С.В., Рогаткин Д.А. Медицинская робототехника: первые шаги медицинских робо-тов//Технологии живых систем. 2010. - Т. 7.

- №4. - С. 3-14.

2. Экспертно-аналитический отчет «Потенциал российских инноваций на рынке систем автоматизации и робототехники». 2014. Отчет подготовлен ООО «Ларза» по заказу ОАО «РВК».

Http://www.rusventure.ru/ru/programm/analy-tics/docs/Otchet_robot-FINAL%>20291014.pdf.

3. Transparency Market Research. Medical Robotic Systems Market (Surgical Robots, Non-Invasive Radiosurgery Robotic Systems, Prosthetics and Exoskeletons, Assistive and Rehabilitation Robots, Non-Medical Robotics in Hospitals and Emergency Response Robotic Systems) - Global Industry Analysis, Size, Share, Growth,

Trends and Forecast 2012-2018. - http:// www.transparencymarketresearch.com/medical-robotic-systems.html.

4. Could Titan Medical Storm The Robotic Surgery Market? March 27th, 2014 by Alpha Deal Group LLC. - http://alphanow.thomsonreuters.com/ 2014/03/titan-storm-robotic-surgery-market/#

5. Рынок реабилитационных роботов до 2021 года - http://robolovers.ru/robots/post/783338/ry-nok_reabilitatsionnyh_robotov_do_2021_goda/

6. Куракова Н.Г., Зинов В.Г., Цветкова Л.А., Ерем-ченко О.А., Комарова А.В, Комаров В.М., Сорокина А.В., Павлов П.Н., Коцюбинский В.А. Модель науки «быстрого реагирования» в Российской Федерации: методология и организация. - М.: Издательский дом «Дело» РАНХиГС, 2014. - 160 с.

1. Kraevskij S.V, Rogatkin D.A. Medical robototronics: first steps of medical robots // Technologies of live systems. - 2010. - Is. 7. - № 4. - P. 3-14.

2. Expert-analytical report «Potential of Russian innovations on the market of automatization and

ЭКОНОМИКА НАУКИ 201 5, Т. 1, № 2_______

robototronics» (2014) Report is prepared by LLC «Larza» on behalf of JSC «RVK». http://www.rus-venture.ru/ru/programm/analytics/docs/Otchet_ robot-FINAL%20291014.pdf.

мэйнстрим

3. Transparency Market Research. Medical Robotic Systems Market (Surgical Robots, Non-Invasive Radiosurgery Robotic Systems, Prosthetics and Exoskeletons, Assistive and Rehabilitation Robots, Non-Medical Robotics in Hospitals and Emergency Response Robotic Systems) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2012-2018. - http://www.transparencymarketrese-arch.com/medical-robotic-systems.html.

4. Could Titan Medical Storm The Robotic Surgery Market? (2014) Alpha Deal Group LLC. http://

alphanow.thomsonreuters.com/2014/03/ti-

tan-storm-robotic-surgery-market/#.

5. Market of rehabilitational robots until 2021 year (2015). http://robolovers.ru/robots/post/783338/ rynok_reabilitatsionnyh_robotov_do_2021_goda/.

6. Kurakova N.G., Zinov V.G., Tsvetkova L.A., Ye-remchenko O.A., Komarova A.V, Komarov V.M., Sorokina A.V., Pavlov P.N., Kotsubinskiy V.A. (2014) Model of a «direct action» science in Russian Federation: methodology and organization // Publishing House «Delo» RANEPA. - 160 p.

Cherchenko O.V., Sheptunov S.A. Robot-assisted surgery and robots exoskeletons for rehabilitation: world technological leaders and perspectives of Russia (Directorate of State Scientific and Technical Programmes, Moscow, Russia; Institute for Design-Technological Informatics Russian Academy of Sciences, Moscow, Russia) Abstract. There was analysed the publication and patent activity with regard to two actively developing areas in the field of medical robototronics: robots-exoskeletons for rehabilitation of people with muscoloskeletal disorders and robot-assisted surgery. There was identified discrepancy in the structure of global and national publication and patent flows. There were revealed disadvantages of foreign innovations on robot-assisted surgery, which create prerequisites for promoting import-substituting innovations of domestic engineers.

Keywords: robot-assisted surgery, robots-exoskeletons for rehabilitation of people with muscoloskeletal disorders, technology leaders, competitive ability, scientometric analysis, patent analysis.

новый нормативный документ

ПЛАНЫ НАУЧНЫХ ИССЛЕДОВАНИЙ РАН ТЕПЕРЬ УТВЕРЖДАЕТ ФАНО

Постановление Правительства РФ от 29 мая 2015 г. № 522 «О некоторых вопросах деятельности Федерального агентства научных организаций и федерального государственного бюджетного учреждения ««Российская академия наук»

В соответствии с новыми правилами координации деятельности ФАНО и РАН, последняя должна согласовывать с ФАНО разрабатываемые научными организациями планы проведения исследований в рамках Программы фундаментальных научных исследований государственных академий наук на 2013-2020 гг.

ФАНО утверждает по согласованию с РАН программы развития научных организаций, а также государственные задания на проведение фундаментальных и поисковых научных исследований организаций, подведомственных агентству.

В случае возникновения между агентством и РАН неразрешимых разногласий, работа по их преодолению передается заместителю председателя правительства, координирующего работу федеральных органов исполнительной власти по вопросам государственной политики в сфере науки.

130 ____________________________________ЭКОНОМИКА НАУКИ 2015, Т. 1, № 2

Опубликовано: Архипов М.В., Головин В.Ф., Журавлев В.В. Мехатроника, автоматизация, управление, № 8, М., 2011, с. 42 – 50

Обзор состояния робототехники в восстановительной медицине

1. Классификация медицинских роботов

Чтобы систематизировать известные и возможные робототехнические системы (РТС) в медицине предложен ряд классификаций . В качестве признаков классификации использованы следующие: инвазивность процедуры, безопасность, мобильность, эргономичность, контроль как управление или диагностика. Один из вариантов классификации, учитывающий последние достижения в медицинской робототехнике приведен на рис.1 . Основные три класса – это роботы для восстановительной медицины, роботы для жизнеобеспечения и роботы для хирургии, терапии и диагностики. Они представляют собой основные области медицинской робототехники, хотя эти классы и их подклассы не являются независимыми по указанным выше признакам. Далее в разделах 3 – 5 рассматриваются представители обозначенных в классификации подклассов восстановительной медицины.

Рис.1

2. Концепция разработки и внедрения роботов в восстановительной медицине для здоровых людей

Восстановительная медицина представляет систему медицинской деятельности, направленной на диагностику функциональных резервов, сохранение и восстановление здоровья человека посредством оздоровления и медицинской реабилитации. Под оздоровлением следует понимать комплекс профилактических мероприятий, направленных на восстановление сниженных функциональных резервов и адаптивных возможностей организма у практически здоровых лиц . Особенную роль профилактической медицины отмечал Нобелевский лауреат И.П. Павлов (рис.2). По его словам: “Профилактическая медицина достигает своих социальных целей только в случае перехода от медицины патологии к медицине здоровья здоровых”.

Рис.2

Понятие восстановительная медицина отличается по существу от понятия медицинская реабилитация, которая представляет комплекс диагностических и лечебно-профилактических мероприятий, направленных на восстановление или компенсацию нарушенных функций организма человека и трудоспособности у больных лиц и инвалидов.

Реабилитация – это закрепление лечебного эффекта в процессе выздоровления больного после болезни. В отличие от реабилитации, обеспечивающей восстановление здоровья у больного человека, восстановительная медицина направлена на воспроизводство утраченных резервов здоровья. Лечебно-оздоровительный арсенал восстановительной медицины обеспечивает человеку социально-творческую активность в своей профессии, то есть работоспособность в тех условиях, в которых протекает его профессиональная деятельность. Реабилитация по преимуществу сосредоточена на органной патологии, и соответственно её критериальный аппарат оценивает степень возвращения к норме. Методический инструментарий восстановительной медицины перенацеливается с поиска симптомов болезни на оценку резервных функциональных возможностей организма, именно к тем нагрузкам, условиям труда, в которых работает человек.

В основу концепции развития здравоохранения и медицинской науки в Российской Федерации на период до 2010 г. положена здоровьецентрическая модель системы здравоохранения, разработанная РНЦВМиК под руководством академика А.Н.Разумова (рис.3). Суть модели состоит в акценте на сохранение здоровья здорового человека а, следовательно, на восстановительную медицину .

Рис.3

В дальнейшем большинство исследований этой монографии будет связано с контингентом не только травмированных в военных действиях, на производстве, в спорте людей, больных детским церебральным параличом, постинсультных больных, но и людей здоровых, устающих от физической и умственной деятельности, снижающих свою работоспособность. Например, преподаватели и студенты университетов. Уместно сказать здесь о развивающейся в настоящее время системе интенсивного информатизированного обучения, которая для повышения эффективности обучения предполагает концентрацию усилий как обучающихся, так и преподавателей без ущерба их здоровья. Для них необходимой является рассматриваемая в монографии восстановительная медицина.

Восстановительная медицина включает ряд терапий, в том числе, немедикоментозные, одним из видов которых является механотерапия. Среди множества известных средств механотерапии наибольшими возможностями обладает робототехника.

О необходимости применения аппаратных средств оздоровительного массажа именно для здоровых людей писал в своей диссертации “Материалы к вопросу о действии массажа на здоровых людей” в 1882 г русский учёный Н.В. Заблудовский (рис.4). “Нельзя ли воспользоваться усовершенствованиями механики для устройства таких машин, которые заменили бы действия рук, или не будет ли даже действие машин предпочтительнее действия рук? Стоило бы изобрести машину, силу которой можно было бы в каждый момент определять в цифрах и вместо работы массёра, зависящей от субъективного мышечного чувства, иметь дело с работой, выраженной в цифрах. Другими словами – вместо того, чтобы количество целебного средства взять на глазок, взвешивать его на точных весах”.

Рис.4

В те времена это было фантастикой, и учёный лишь мечтал о возможности дозирования воздействий на аппаратных средствах будущего. В настоящее время мечты великого предсказателя могут быть реализованы при обращении к развитой адаптивной интеллектуальной робототехнике. Проблема для медицины, в первую очередь, состоит в развитии концепции Н.В. Заблудовского о новом подходе к физической культуре человека с участием не только волевых и пассивных движений, но и массажа. Массаж может иметь как функцию релаксации, так и мобилизации. В оптимальном объединении этих функций физическая культура сможет в большей степени способствовать сохранению и повышению запасов здоровья и повышению работоспособности в физическом и умственном труде.

Поэтому существом концепции разработки и внедрения роботов в ВМ для здоровых людей является использование адаптивных и интеллектуальных роботов в сочетании с другими видами терапий: аромо-, мело-, психотерапией для сохранения повышения запасов здоровья людей, повышения их работоспособности.

Конечно, робототехническая система является автоматизированным средством, лишь временно работая автоматически, подчиняясь человеку на уровне принятия сложных решений и являясь разумным, а не только физическим помощником.

В соответствии с классификацией, предложенной выше, проведен обзор состояния робототехники для восстановительной медицины по трём направлениям: манипуляции на суставах или движения конечностей в суставах; манипуляции на мягких тканях, т.е. разнообразный массаж; активные и биоуправляемые протезы.

3. Роботы для выполнения движений конечностей в суставах

Движения конечностей в суставах руками врача широко используются в спортивной, восстановительной медицине, в лечении и обучении пациентов с последствиями инсульта, детского церебрального паралича. Пассивные и активные движения конечностей в суставах часто выполняются вместе с массажем, в том числе, и в оздоровительных целях. Механотерапия заменяет руки врача руками манипулятора. Одни из первых работ, в которых был предложен манипуляционный шестиприводной робот для массажа и движения конечностей в суставах появились в 1997г. . Позднее появляются одноприводные роботы американской фирмы ”Biodex ”, швейцарской фирмы “Con -Trex ”и четырёхприводной робот швейцарской фирмы “Lokomat ” .

Робот швейцарской фирмы “Lokomat” является наиболее ярким представителем подкласса реабилитационных роботов для выполнения движений конечностей в бедренных, коленных и голеностопных суставах. Существует концепция нейропластичности, которая предполагает "постановку задачи специфического обучения" и заключается в том, что с помощью многократно повторяющихся тренировок можно улучшить повседневную двигательную активность у пациентов с неврологическими нарушениями. Роботизированная терапия на комплексе Lokomat отвечает вышеописанным требованиям и дает возможность проведения интенсивной локомоторной терапии с обратной связью. Общий вид комплекса представлен на рис. 5.

Рис. 5

Lokomat состоит из четырёх приводов для навязывания движений ходьбы и системы разгрузки веса пациента и беговой дорожки.

Пациенты, находящиеся в инвалидном кресле, могут быть без особого
труда переведены на полотно беговой дорожки и закреплены с помощью специальных фиксаторов. Управляемые компьютером приводы синхронизированы со скоростью беговой дорожки. Они задают ногам пациента траекторию движения, которая формирует ходьбу, близкую к естественной.

Усиленная мотивация пациента осуществляется за счет управления нагрузкой с помощью биологической обратной связи при выводе текущего состояния на монитор (рис. 6).

Рис. 6

Для задач ортопедии (взрослая и детская), спортивной медицины, производственной реабилитации, профилактики и лечения остеоартритов известен робот американской фирмы “Biodex ”. Принцип действия основан на электронной динамометрии. Система обеспечивает быструю и точную диагностику, лечение и документирование нарушений, являющихся причиной функциональных расстройств мышц и суставов. Система позволяет проводить мобилизацию суставов в направлении сгибание / разгибание, отведение / приведение и ротация, что необходимо для полноценного восстановления их утраченных функций.

В комплектацию входит набор приспособлений для работы с тазобедренным, коленным, плечевым и локтевым суставами, а также с голеностопом и запястьем. Общий вид системы, работающей с верхними и нижними конечностями, представлен на рис. 7.

Рис. 7

Роботы для восстановления верхних и нижних конечностей были представлены на симпозиуме по медицинской робототехнике в Пенсильвании . На рис.8 слева: манипулятор GENTLE /s , разработка University of Reading , Великобритания; в центре: манипулятор ARMguide , разработка Rehabilitation Institute of Chicago ; справа: манипулятор Manipulandum , разработка Rehabilitation Institute of Chicago .

Рис.8 Манипуляторы для восстановления верхних конечностей

На рис.9 вверху слева: робот AutoAmbulator , разработка HealthSouth , США; вверху справа: тренажёр для ходьбы, разработка University of California , США); внизу слева: робот GaitMaster 2, разработка University of Tsukuba , Япония); внизу справа: робот для движений конечностей, а также для массажа, разработка Российской Академии Наук) подробно описанная ниже.


Рис.9 Роботы для восстановления суставов нижних конечностей

Воздействия с помощью рассмотренных выше роботов относят к механотерапии. Механотерапия - метод лечебной физкультуры, основанный на выполнении дозированных движений (преимущественно для отдельных сегментов конечностей), выполняемых с помощью специальных приспособлений. Механотерапия применяется в качестве восстановительного лечения при различных двигательных расстройствах, когда необходимо увеличить амплитуду движений в суставах и силу определенных мышечных групп. На некоторых аппаратах можно заниматься сразу после оперативного вмешательства. Выбор движений, выполняемых на механотерапевтических аппаратах, определяется характером ограничения движений и анатомическими особенностями сустава.

    Роботы для выполнения манипуляций на мягких тканях (роботы для массажа)

История появления роботов в ВМ для массажа такова. В 1997 г. на втором форуме IARP по медицинской робототехнике была представлена только одна работа с использованием робототехники для восстановительной медицины – робот для массажа . В 2002 г. на сайте голландской фирмы появился робот для массажа Tickle - щекочущая букашка. В 2003 г. появился российский патент – робот для шлейф-массажа . В 2005 г. на сайте Силиконовой долины появилось сообщение об использовании робота Puma для массажа. За основу этого робота была взята идея, изложенная в российской работе . К сожалению, развитие этой разработки неизвестно. Перечисленные выше работы представляют большинство известных роботов для массажа, если не иметь ввиду многочисленных аппаратных средства для массажа.

Разнообразные аппаратные средства издавна применяются для облегчения труда массажиста, предупреждения профессиональных заболеваний кистей его рук. Простейшие из них: вибраторы, роллеры, насадки для акупунктуры и акупрессуры представляют средства механизации, которые перемещает массажист (рис. 10).


Рис.10. Аппаратные средства восстановительной медицины

Следует заметить, что робот может быть носителем упомянутых аппаратных средств.

Более сложными являются средства автоматизации, например, массажные кресла. Массажные кресла (рис.11) в качестве актуаторов имеют воздушные подушки с регулируемым давлением, ролики с управляемыми усилиями прижатия. Зоны воздействия массажа: шейно-плечевой отдел, спина, поясничный отдел, ягодицы, бёдра, голени, ступни. Виды массажа: разминающий, похлопывающий, поколачивающий, вибрационный, Шиатсу. С пульта управления можно установить желаемый уровень интенсивности массажа.

Рис.11

Пользуются популярностью полуавтоматические аппаратные средства массажа, частично разгружающие массажиста. На рис.12 показана рука производства американской фирмы Meilis, помогающая выполнять прижимные приёмы.

Рис.12

Робот голландской фирмы Tickle весьма прост по конструкции (рис. 13). В металлическом корпусе находятся два электромотора, аккумуляторная батарея и четыре датчика, позволяющих следить за наклоном поверхности, по которой передвигается робот-массажист. Движение осуществляется с помощью двух силиконовых "гусениц", покрытых выступами, создающими массажный эффект. Принцип движения робота напоминает принцип движения танка: каждый из моторов приводит в движение свою гусеницу. Воздействия робота – поглаживающие и щекочушие, вызывающие эффект релаксации.

Рис.13

Робот для шлейф-массажа выполняет плоскостное, непрерывное, прямолинейное поглаживание на больших поверхностях тела (спина, грудь, живот, конечности). Такого рода поверхностное поглаживание отличается особо нежными и легкими движениями, оказывающими успокоительное воздействие на нервную систему, вызывает мышечное расслабление и улучшение кровообращения. Конструкция робота представляет каретку с электродвигателем, перемещающеюся по траверсе вдоль тела пациента (рис.14). Траверса профилирована по рельефу задней поверхности номинального пациента и не может быть перепрограммирована. С каретки свешиваются поглаживающие щётки и прижимаются к пациенту упругими пластинками.

Рис.14

В 2007 году в Японии разработан робот для массажа лица WAO-1 (Waseda Asahi Oral Rehabilitation Robot 1). Робот (рис.15) оснащен двумя 50-сантиметровыми механическими руками, которые массируют лицо пациента с обеих сторон. Безопасность обеспечивается силометрической ограничительной системой, которая раздвигает руки робота в стороны, стоит ему только приложить слишком большое усилие.
Лицевой массаж признан весьма эффективным средством борьбы с сухостью во рту, поскольку стимулирует дополнительное слюноотделение, а также помогает исправить нарушения ротовой структуры.

Рис. 15

Эффективность аппаратных средств массажа определяется адекватностью механического контакта с пациентом. Этот контакт осуществляется через инструмент аппаратного средства. Поэтому в техниках, воспроизводящих руки человека, инструмент должен имитировать контактные свойства человеческой руки: упругость, теплоту, влажность, фрикционные свойства (шероховатость, гладкость, скользкость), координационные возможности (многопальцевость, способность захватывать). В большей степени перечисленные свойства может обеспечить многосуставный манипуляционный робот.

В Московском Государственном Индустриальном Университете разработан робот для выполнения приёмов массажа и движения конечностей в суставах . Основой этого робота является промышленный робот РМ-01, манипуляционная рука которого антропоморфна по размерам и кинематике (рис.16). В контакте с телом робот развивает усилие до 60 Н. Необходимые усилия развиваются и контролируется за счёт позиционно – силовой системы управления, расширяющей возможности штатного робота.

Рис.16

Шестиприводной робот с указанными данными может выполнять множество известных манипуляций непосредственно на мягких тканях, т.е. разнообразный массаж, а также манипуляции на суставах в виде пассивных и активных движений конечностей, постизометрической релаксации в виде сочетаний нагружений и разгрузок мышц конечностей. На рис.17 робот выполняет выжимание длинных мышц спины девочки.

Рис.17

    Активные биоуправляемые протезы верхних и нижних конечностей

Биопротезирование верхних и нижних конечностей, утраченных в результате травм или болезни опирается на более простые решения. Некоторые простейшие решения в какой-то степени лишь эстетически восстанавливают внешность конечностей, другие решения восстанавливают некоторые функции. На рис.18 приведена классификация протезов, в которой выделены классы активных и биоуправляемых протезов.

Рис.18

Разработанные на основе теории баллистических синергий , протезы нижних конечностей не являются активными и не используют биосигналы, но эффективно используют упругость пружин протезов.

В тяговых протезах верхних конечностей, вначале как пассивных, движения схвата кисти вызывались за счёт дополнительных движений сохранившейся части руки или за счёт движения туловища. Передающим звеном вначале были гибкие тяги, впоследствии появились активные тяговые протезы, в которых движения тяг воспроизводились встроенными двигателями.

Активными, но не биоуправляемыми, являются миотонические протезы, в которых управляющими сигналами являются усилия инвалида. Датчики в виде микровыключателей или тензоэлементов измеряют эти усилия и передают на исполнительные приводы кисти.

Рассмотренные способы протезирования без использования биосигналов имеют ряд недостатков. Управляющие тяги обременяют инвалида, затрудняют движения плечевого пояса, число управляющих команд так же, как при миотоническом управлении, ограничено (одна-две команды). Помехами для управления являются случайные внешние толчки в гильзу культи протеза. Тем не менее, простейшие протезы разработаны в виде модульных конструкций и выпускаются серийно .

Развитию биоуправляемых протезов способствовали достижения в области электрофизиологии, биомеханики, микроэлектроники, адаптивных систем управления с обратными связями.

В настоящее время известна немецкая фирма “Otto Bock ”, серийно выпускающая пассивные и активные протезы. На рис.19 приведен активный протез коленного сустава.

Рис.19

Наиболее значительные результаты по биопротезированию в 70-80-х годах в России известны по работам ЦНИИ ПП . В работах ЦНИИПП родилось принципиально новое направление в протезировании конечностей - создание протезов с биоэлект-рической системой управления или биоуправляемых протезов. Сущность нового принципа построения искусственных конеч-ностей состоит в том, что управление внешними источниками энергии, за счет которой работает протез, в своей основе по-добно естественной координации движений здорового человека.

В живом организме управляющие воздействия передаются мышцам посредством биоэлектрических импульсов, отража-ющих команды центральной нервной системы. Подобно этому в протезе руки с биоэлектрическим управлением роль команд-ных сигналов выполняют биотоки, отводимые от усеченных мышц культи. Механизмом, исполняющим команды, является искусственная кисть, снабженная малогабаритным электри-ческим приводом с автономным питанием.

По материалам симпозиума 2004 г. в Пенсильвании известны активные протезы и экзоскелетоны, приведенные на рис.20.

Рис.20 Активные протезы и экзоскелетоны

Одними из первых работ в области активных протезов и экзоскелетонов являются работы Миомира Вукобратовича . Под его руководством были разработаны экзоскелетоны, в одном варианте с электрическими, в другом с пневматическими приводами тазобедренного, коленного и голеностопного суставов для обеих ног пациента (рис.21). Экзоскелетон предназначался для усиления дистрофически слабых мышц нижних конечностей человека во время ходьбы.

Рис.21

Японская компания Matsushita разработала роботизированный костюм, который поможет реабилитации частично парализованных людей (рис.22). Когда человек, страдающий параличом на одну руку, делает движение здоровой рукой, парализованная рука делает то же самое движение, напрягая и сгибая компрессоры, которые играют роль мускулатуры. Повторяя движения здоровой руки, человек в роботизированном костюме может тренировать свою больную руку до восстановления нормального функционирования конечности.

Рис.22

Костюм весит 1,8 кг. Он был разработан совместно компанией

Были проведены испытания костюма в госпитале, и планируется поставить производство на коммерческую основу. Приблизительная цена костюма для использования в реабилитационных клиниках составит 17000 долл., для домашнего использования – около 2000 долл.

Другая токийская компания Cyberdine разработала автоматизированный костюм HAL (Hybrid Assistive Limb) (рис. 23), который помогает пожилым людям и людям с ограниченными способностями ходить. Устройство с датчиками будет доступно в Японии за арендную плату, составляющую 2200$ в месяц. 22-фунтовая компьютерная система, работающая от батареи, крепится к талии. Она управляет приводами на скобах, которые крепятся ремнями к бедрам и коленям, и обеспечивают автоматизированную помощь во время ходьбы.

Рис.23

Выводы

1. Судя по публикациям организаций- разработчиков и медицинских центров области применения медицинских роботов, в том числе для восстановительной медицины, расширяются и спрос на них увеличивается.

2. Медицинские роботы в сравнении другими аппаратными средствами имеют ряд преимуществ. Это – быстрая перепрограммируемость, высокая точность повторения движений, неутомимость, отсутствие субъективных факторов (добросовесность), дружественный интерфейс (психоэмоциональный контакт), партнёрство (для детей вовлечение в игры, в разнообразные движения, например, в утреннюю зарядку). Также адаптация к индивидуальным особенностям человека (позиционно-силовое управление), наличие интеллекта (накопление опыта, анализ, генерация программ), повышенная безопасность за счёт адаптации и интеллекта.

3. В сравнении с руками врача медицинские роботы сегодняшнего дня часто уступают в чувствительности и координации в сложных движениях.

4. Концепция разработки и внедрения роботов в ВМ для здоровых людей состоит в применении адаптивных и интеллектуальных роботов для сохранения и увеличения запасов здоровья населения, восстановлении работоспособности трудящихся.

5. При разработке и внедрении роботов в ВМ следует делать компромиссный выбор между многофункциональными роботами и экономичными специализированными с малым числом приводов.

6. Для разработанных аппаратных средств ВМ, включая роботы, манипулирующие на мягких тканях и суставах, активные и биоуправляемые протезы, эффективно используется тактильная и силометрическая информация, как для разомкнутых, так и для замкнутых силовых и позиционно-силовых систем управления.

7.Биоинформация используется непосредственно как управляющие сигналы, образует замкнутые системы или образует биологические обратные связи через зрение и нервную систему человека.

Список литературы

    Головин В.Ф. Проблемы развития робототехники в восстановительной медицине. Труды конференции “Мехатроника”, СПб., 2008

    Саврасов Г.В. Медицинская робототехника: состояние, проблемы и общие принципы проектирования. // Вестник МГТУ им. Баумана Н.Э. Спецвыпуск «Биомедицинская техника и технология, серия «Приборостроение», 1998

    Разумов А.Н., Головин В.Ф. Массаж как культура повседневной жизни здоровых людей, Вестник оздоровительной медицины, М.: 2010, №6

    Разумов А.Н., Здоровье здорового человека. - М. “Медицина”, 2007

    Разумов А.Н., Пономаренко В.А., Пискунов В.А. Здоровье здорового человека. М.: Медицина, 1996

    Дубровский В.И., Валеология. Здоровый образ жизни. – М.: Retorika- A, 2001.

    Разумов А.Н., Покровский В.И. Здоровье здорового человека, научные основы восстановительной медицины, М.: РАМН РНЦ ВМК, 2007

    Заблудовский В.И., диссертация “Материалы к вопросу о действии массажа на здоровых людей”- СПб.: 1882 г

    Golovin V.F. Robot for massage. Proceedings of JARP 2nd Workshop on Medical Robotics Heidelberg, Germany, 1997

    Biodex system 3. Manual, 20 Ramsay Road, Shirley, New York 11967-4704

    Ковражкина Е.А., Румянцева Н.А., Старицын А.Н., Суворов А.Ю., Иванова Г.Е., Скворцова В.И. Роботизированные механотренажеры в восстановлении функции ходьбы у больных с инсультом. // М.: Расмирби, №1 (24) 2008, с. 11-16.

    Assistive technologies. Proceedings IARP, Workshop on medical robotics. Hidden Valley, Pennsylvania, USA, 2004

    Rehabilitation robotics, Proceedings IARP, Workshop on medical robotics. Hidden Valley, Pennsylvania, USA, 2004

    Мансуров О.И., Мансуров И.Я. Способ аппаратного поверхностного массажа и реализующий этот способ робот для шлейф-массажа. Рос.патент №2005130736/14 от 05.10.2005

    Jones, Kenny C., Du, Winncy, “Development a Massage Robot for Medical Therapy,” Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM’03), July 23-26, 2003, Kobe, Japan, pp. 1096-1101

    Golovin V.F., Grib A.N. Mechatronic system for manual therapy and massage. Proc. 8-th Mehatronics Forum International Conference, University of Twente, Netherlands, 2002

    Golovin V.F. Robot for massage and mobilization. Proceedings of workshop of AMETMAS-NoE, Moscow, Russia, 1998

    Golovin V.F., Grib A.N. Computer assisted robot for massage and mobilization. Proc. “Computer Science and Information Technologies”, Conference Greece University of Patras, 2002

    Головин В.Ф., Саморуков А.Е. Способ массажа и устройство для его осуществления. Рос. патент № 2145833, 1998

    Головин В.Ф. Мехатронная система для манипуляции на мягких тканях. / Мехатроника, автоматизация, управление. – М.: 2002, №7

    Питкин М.Р. Биомеханика построения протезов нижних конечностей.-СПб.: Изд-во “Человек и здоровье”, 2006.-131с.

    Конструкции протезно-ортопедических изделий. Под ред. Кужекина А.П. М. “Лёгкая и пищевая промышленность”, 1984

    Якобсон Я. С., Морейнис И. Ш., Кужекин А.П. Конструкции протезно-ортопедических изделий /Под редакцией А.П. Кужекина. М., : Лёгкая и пищевая промышленность, 1984

    Вукобратович М. Шагающие и антропоморфные механизмы. Изд.-во “Мир”, М. 1976

Отделение роботизированных методов медицинской реабилитации является подразделением Центра медицинской реабилитации и восстановительной медицины.

В работу отделения внедрены отечественные и зарубежные технологии восстановительного лечения и реабилитации, гармонически сочетающие классические проверенные методики и современные научные достижения.

Основное направление работы отделения - восстановительное лечение и реабилитация после нарушения мозгового кровообращения, черепно-мозговых травм, поражений опорно-двигательного аппарата.

Наличие высокотехнологичного реабилитационного оборудования с биологической обратной связью позволяет оценить функциональные резервы организма и составить индивидуальную программу лечения для каждого больного.

Комплекс Biodex Systems 4 PRO - лидер в области нейромышечного тестирования и реабилитационных упражнений. Сочетание динамических и статических мышечных нагрузок, возможность проводить мобилизацию суставов в различных направлениях позволяет осуществлять полноценное восстановление утраченных двигательных функций.

Области применения: ортопедия, неврология, травматология, спортивная медицина, производственная реабилитация, геронтология.

Комплекс обеспечивает быструю и точную диагностику, лечение и документирование нарушений, являющихся причиной функциональных расстройств суставов и мышц. В комплектацию входит набор приспособлений для работы с тазобедренным, коленным, плечевым, локтевым, голеностопным и лучезапястным суставами.

Система Biodex Systems 4 дает полную свободу в выборе режимов лечения на различных клинических этапах, что позволяет индивидуально подойти к проблемам каждого пациента.

Роботизированный реабилитационный комплекс Lokomat применяется для восстановления навыков ходьбы у больных с выраженным двигательным дефицитом вследствие черепно-мозговых и спинальных травм, последствий нарушения мозгового кровообращения.

Роботизированные ортезы точно синхронизированы со скоростью беговой дорожки и задают ногам пациента траекторию движения, которая формирует ходьбу, близкую к физиологической. Дружественный компьютерный интерфейс позволяет врачу управлять аппаратом и регулировать параметры тренировки согласно возможностям и потребностям каждого пациента Интегрированная система обратной связи визуально в реальном времени иллюстрирует параметры походки.

Роботизированный ортез Armeo позволяет повысить эффективность восстановления функции верхних конечностей, нарушенных вследствие черепно-мозговой и спинальной травм, рассеянного склероза, нарушения мозгового кровообращения; после оперативного удаления опухолей головного и спинного мозга; при посттравматических нейропатиях.

Занятия на Armeo дают возможность предотвратить угрожающую потерю мышечной силы и развитие контрактуры суставов, способствуют уменьшению спастичности, улучшению координации, обучают новым движениям. Armeo позволяет пациентам с гемипарезом, используя остаточные функциональные возможности поврежденной конечности, развивать и усиливать локомоторную и хватательную функции. Компьютерная программа содержит широкий набор эффективных и увлекательных видеоигр с различными уровнями сложности. Аппарат оснащен функцией биологической обратной связи.

THERA-VITAL - тренажер для реабилитации верхних и нижних конечностей в активно-пассивном режиме. Применяется:

  • в неврологии (инсульт, ЧМТ, спинальная травма, болезнь Паркинсона, ДЦП);
  • травматологии-ортопедии (состояние после длительной иммобилизации, после эндопротезирования);
  • в кардиологической реабилитации;
  • геронтологии (снижение дефицита движений у лиц пожилого и старческого возраста);
  • для снижения последствий дефицита двигательной активности (отеки, контрактуры суставов);
  • в целях профилактики осложнений у пациентов разных возрастов со сниженной двигательной активностью.

Реабилитационный тренажер Kinetec Centura используется для постоянной пассивной разработки плечевого сустава в целях профилактики суставной тугоподвижности, контрактуры мягких тканей и мышечной атрофии.

С применением тренажера предотвращается окоченение плечевого сустава, ускоряется процесс послеоперационного восстановления диапазона движений, улучшается качество суставной поверхности, уменьшается боль и отечность.

Показания к применению: операция на манжете мышц-вращателей, полная замена плечевого сустава, "замороженное плечо", переломы и вывихи, требующие реконструктивной операции на ключице, лопатке, артротомия, акромиопластика, ожоги, реабилитация после мастэктомии.

BTE TECHNOLOGIES (TECH TRAINER , PRIMUS RS ) - универсальные комплексы для функциональной оценки, диагностики и реабилитации опорно-двигательного аппарата. Включают большое количество адаптеров и насадок для симуляции различных профессиональных и повседневных действий (как изолированные, так и комплексные движения). Позволяют проводить тренировки во всех двигательных плоскостях. Благодаря сенсорному монитору и дружественному интерфейсу программного обеспечения значительно облегчаются тестирование и тренировки. Данные тестов и тренировок сохраняются и документируются.

Области применения: производственная и спортивная реабилитация, ортопедия, нейрореабилитация, тестирование силы.

Бесконтактный гидромассаж на аппаратах « Medistream », « Medy Jet »

Гидромассаж уже более 20 лет рекомендуется докторами и профессиональными спортсменами для облечения и снятия болей. Мощные волны теплой воды охватывают все тело, даря телу глубокий расслабляющий и восстанавливающий массаж. Процедура бесконтактного гидромассажа облегчает боль, снимает мышечное напряжение, улучшает кровообращение в массируемой области, снимает стресс и тревожность.

Альфа-капсула — это воздействие механолечебных, термолечебных и фотолечебных факторов: общая вибротерапия, системная и локальная термотерапия, импульсная фотостимуляция и селективная хромотерапия, аудиорелаксация, ароматерапия, аэроинотерапия. Альфа-массаж, проводимый в капсуле, улучшает настроение пациентов, снижает внутреннюю напряженность, значимо увеличивает прирост толерантности к физической нагрузке и стабилизирует вегетативный статус.

Показания для проведения процедур в Альфа-капсуле: избыточный вес; локальные жировые отложения; целлюлит; снижение тургора и тонуса кожи; очищение и детоксикация тела, эмоциональное напряжение, расстройства сна; неврозы; хроническая усталость; гипертоническая болезнь; головные боли; пониженный иммунитет; реабилитация после спортивных травм; последствия длительных перенесенных заболеваний.

Аппарат для пневмокомпрессии нижних конечностей PULSTAR s 2

В настоящее время пневмокомпрессия является основным методом, применяемым с целью профилактики и лечения различных хронических сосудистых заболеваний конечностей.

Пневматическая компрессия представляет собой метод активной функциональной терапии, где в качестве лечебного фактора используется дозированная физическая нагрузка - сдавливание конечностей. Процедуры пневмомассажа способствуют улучшению периферического кровообращения, ускорению тока крови, развитию коллатерального русла, уменьшению спазма сосудов, улучшению трофики тканей.

Показания к применению: местные отечные синдромы при венозной недостаточности и лимфостазе; облитерирующие заболевания нижних конечностей; снятие утомления и восстановление работоспособности после длительных физических нагрузок, вынужденной гиподинамии; в целях профилактики сосудистых заболеваний конечностей у лиц, которые длительное время по роду своей деятельности находятся на ногах; при постмастэктомических отёках верхних конечностей.

Многофункциональная кровать-массажер Nuga Best сочетает в себе различные методы оздоровления: рефлексотерапевтическое воздействие, мануальную терапию, физиотерапию, низкочастотную миостимуляцию.

Сочетание в одном изделии различных методик воздействия на организм позволяет проводить мероприятия эффективной профилактики и оздоровления по широкому спектру заболеваний:

  • опорно-двигательного аппарата (заболевания позвоночника);
  • трофических расстройств нейрогенного и сосудистого происхождения;
  • периферической нервной системы (радикулиты);
  • ситуационных стрессовых ситуаций (нервного переутомления);
  • синдромом хронической усталости и физического переутомления;
  • коррекция осанки в подростковом и юношеском возрасте;
  • в гинекологии и урологии.

Все большую роль играют микророботы способные самостоятельно функционировать внутри человеческого организма. Отметим что медицинские робототехнические системы являются медицинскими по своей сути объединяя в единое целое механические и электронные компоненты функционирующие в составе интеллектуальной робототехнической системы. Роботы для реабилитации инвалидов. Медицинские роботы реабилитации предназначены главным образом для решения двух задач: восстановления функций утраченных конечностей и жизнеобеспечения инвалидов прикованных к...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Введение

Последнее десятилетие отмечено бурным развитием высоких медицинских технологий, формирующих облик медицины 21 века. Во многих развитых странах активно ведутся разработки различных мехатронных устройств медицинского назначения. Основные направления развития медицинской мехатроники – разработка систем для реабилитации инвалидов, выполнения сервисных операций, а также для клинического применения. Основные направления развития медицинской мехатроники представлены на рис. 1.

Рисунок 1. Основные направления развития медицинской мехатроники.

Все большую роль играют микророботы, способные самостоятельно функционировать внутри человеческого организма. Отметим, что медицинские робототехнические системы являются медицинскими по своей сути, объединяя в единое целое механические и электронные компоненты, функционирующие в составе интеллектуальной робототехнической системы. ниже рассмотрены основные достижения в области медицинской мехатроники и намечены перспективы ее дальнейшего развития.

Роботы для реабилитации инвалидов.

Медицинские роботы реабилитации предназначены главным образом для решения двух задач: восстановления функций утраченных конечностей и жизнеобеспечения инвалидов, прикованных к постели (с нарушениями зрения, опорно-двигательного аппарата и другими тяжкими заболеваниями).

История протезирования насчитывает не одно столетие, но к мехатронике непосредственное отношение имеют лишь так называемые протезы с усилением. Современные автоматизированные протезы не нашли широкого применения из-за конструктивных и эксплуатационных несовершенств и малой надежности в работе. Но уже сейчас делается многое, чтобы улучшить их характеристики за счет внедрения в их конструкцию новых материалов и элементов, таких, как пленочные тензодатчики для управления силой сжатия пальцев руки-протеза, электронно-оптические датчики, монтируемые в оправе очков для управления протезом руки с помощью глаз пациента и т.п.

В Японии разработана механическая рука, исполнительный орган которой имеет шесть степеней свободы и систему управления протезом. В Оксфорде (Великобритания) создана система управления для манипуляторов, предназначенных для протезирования, особенностью которых является способность выполнения заданий заранее не запрограммированных. Они обеспечивают обработку сенсорной информации, включая систему распознавания речи. Одной из проблем является формирование управляющих сигналов пациентом без помощи конечностей. Известны устройства для помощи пациентам с двумя или четырьмя ампутированными или парализованными конечностями, приводимые в движение с помощью электрического сигнала, возникающими в результате сокращения мышц головы или туловища. Разработана конструкция механической руки с телесистемой, управление которой осуществляется датчиками на голове больного, реагирующими на движение головы или бровей и подающими сигналы микропроцессору, управляющему исполнительным органом манипулятора.

Для решения задач жизнеобеспечения неподвижных больных созданы различные варианты роботизированных систем. Качественно новым конструктивным решением является антропоморфная рука – манипулятор, смонтированная на инвалидной коляске и управляемая ЭВМ. Данная система позволяет больному с минимальным уровнем подготовки управлять рукой - манипулятором для удовлетворения физиологических потребностей, пользования телефоном и т.д.

Известны медицинские роботизированные комплексы, функционирование которых осуществляется через центральный контрольный пост или с помощью различных командных устройств, задание для которых пациент формирует с помощью речевых команд. Система включает в себя антропоморфную руку - манипулятор, управляющую аппаратуру, командное устройство, телевизионный монитор, а также автоматизированную транспортную тележку. По желанию больного включаются телевизор, радио, осветительные приборы, изменяется положение больного на кровати, приводится в действие манипулятор.

Важной проблемой, связанной с реабилитацией инвалидов, является создание для них рабочих мест. В Великобритании разработано автоматизированное рабочее место для инвалидов с нарушениями опорно-двигательной системы. Робот представляет собой манипуляционную систему, которая управляет речевыми командами оператора; он способен по желанию пациента выбирать музыкальные диски, книги, переворачивать листы читаемой книги, переключать периферийные устройства компьютера, набирать номера телефонов.

В США было разработано автоматизированное рабочее место с антропоморфной рукой – манипулятором для инвалидов, страдающих тяжелой формой нарушения опорно–двигательной системы. Пациент с минимальным уровнем подготовки может управлять роботом, предназначенным для приема пищи, питья, ухода за волосами, чистки зубов, чтения, пользования телефоном, а также для работы на персональном компьютере. Контроллер, размещенный под подбородком пациента, для управления автоматизированным рабочим местом может монтироваться на инвалидной коляске или на столе рабочего места. Это делает, в частности, возможным использование большого числа автоматизированных рабочих мест для одновременного кормления группы пациентов. Такие мероприятия обеспечивают пациентам возможность общения друг с другом и способствуют их осознанию себя как полноправного члена общества.

Сервисные роботы.

Медицинские роботы сервисного назначения призваны решать транспортные задачи по перемещению пациентов, различных предметов, связанных с их обслуживанием и лечением, а также выполнять необходимые действия по уходу за больными, прикованными к постели.

Внедрение в систему здравоохранения роботов этой группы позволит освободить медперсонал от рутинной вспомогательной работы, предоставив ему возможность заниматься своими профессиональными делами.

Разработан робот, выполняющий функции, связанные с приложением больших усилий – транспортировка, укладывание больных и т.п. Робот представляет собой электрогидравлическую систему с автономным источником питания. Возможность управлять роботом предоставляется как пациенту, так и мед персоналу. Он оснащен сенсорной системой. Робот способен обслуживать больного, масса которого не превышает 80 кг.

В Великобритании разрабатывается роботизированное устройство, способное выполнять операции по переворачиванию лежачих тяжелобольных с целью устранения у них пролежней. В результате появляется возможность устранить вынужденные потери и освободить медсестер от выполнения этой изнурительной работы. Такие устройства позволяют, в частности, одному медработнику мыть в ванне тяжелобольных, не прибегая к помощи других сотрудников.

В Японии разработан образец мобильного робота – поводыря Meldog для слепых, представляющий собой небольшую траспортную четырехколесную полноприводную тележку, система управления которой оснащена системой технического зрения и ЭВМ. В память ЭВМ записан маршрут движения в пределах данного населенного пункта. Одни датчики робота по месторасположению стен домов и выбранных опорных точек идентифицируют уличные перекрестки, другие обнаруживают дорожные препятствия. По сигналам с датчиков бортовая ЭВМ робота вырабатывает стратегию преодоления препятствий. Робот – поводырь управляет движением слепого пациента с помощью элементов связи, которые расположены на мягком прилегающем к телу инвалида поясе. Электрические импульсы, генерируемые этим поясом, являются командами для пациента при остановке робота или его повороте налево или направо. Робот контролирует скорость своего передвижения и останавливается в 1..2 м впереди ведомого слепого пациента. В перспективе появление подобных мобильных роботов с улучшенной системой управления, основанной на принципах вероятностной логики.

Внедрение транспортных мобильных роботов в инфраструктуру медицинских учреждений России значительно облегчит решение вопроса о нехватке младшего медицинского персонала.

Основными видами транспортировочных работ, которые предполагается поручать медицинским мобильным роботам, является: централизованная доставка медицинских материалов и оборудования, лотков и поддонов с пищей для пациентов, лабораторных анализов, готовых медикаментов, почты для больных, а также утилизация и транспортировка материалов и отходов из служебных помещений.

В США разработан транспортный мобильный робот для госпиталей. В госпитале г. Данбэри этот робот в автономном режиме управления развозит лотки с пищей. Госпиталь насчитывает 450 коек для больных. Ежедневно робот развозит около 90 поддонов или лотков с пищей для вновь прибывших пациентов.

Медицинский робот Helpmate оснащен системой технического зрения, состоящей из нескольких цветных ТВ – камер, акустических локаторов и неконтактных НК – датчиков для обнаружения дорожных препятствий, измерения расстояния до них и составления маршрута безопасного движения. На передней стенке робота расположены также электровыключатель экстренной остановки (продублированный на задней стенке), сигнальная лампа – вспышка и сигналы поворота.

На заднюю стенку робота выведены устройства считывания карты местности: клавишная панель, переключатель вида работ, шкаф для лотков с пищей и ниша для аккумуляторов.

Стратегия преодоления препятствий решается с помощью бортовой ЭВМ на базе составленной карты местности. Данные, полученные с датчиков первичной информации, логически обрабатываются и выводятся на карту местности. Датчики сканируют местность спереди передвигающегося робота, так что в случае появления препятствия робот по сигналам с датчиков останавливается. В течение нескольких минут ЭВМ обрабатывает данные и подтверждает наличие преграды. Если препятствие движется, то робот ожидает до тех пор, пока оно не исчезнет. Если же объект стоит неподвижно, то робот начинает маневрировать в целях обхода препятствия сбоку. Все процессы маневрирования записываются в память машины. В случае неудачи все записанные параметры маневрирования сравниваются с истинным положением робота и проводится корректировка программы и системы управления. Время обучения мобильного робота передвижению в автономном режиме зависит от сложности маршрута, размеров коридоров и дверных проёмов в больнице.

Помимо робота Helpmate в США разработана госпитальная роботизированная система Robotek упрощенной конструкции и меньшей стоимости.

В Канаде ведутся исследования по созданию медицинского мобильного робота автономного управления с высокими тактико-техническими характеристиками. В целях обеспечения высокой функциональной надежности система управления робота оснащена резервной системой управления, а также системой самодиагностики, способной в автоматическом режиме определять отказы в системе управления и их причины.

В Японии для транспортировки лежачих больных в пределах госпиталя разрабатывается медицинская мобильная робототехническая система, представляющая собой дистанционно управляемую транспортную тележку. Робот оснащен устройством для перекладки больного с больничной койки на транспортировочное средство, состоящей из доски с крепежными мягкими ремнями вверху и внизу. Это подвижное устройство может перемещаться между пациентом и его коечным матрацем и позволяет самому больному передвигаться на доске, которая подвешивается на роботе в двух местах, позволяющих ей принимать конфигурацию кресла.

По мнению экспертов Japan Industrial Robot Association (JIRA ), японский рынок госпитальных мобильных роботов возрос с 1000 в 1995 году до 3200 в 2000 г.

За последние годы повысился интерес к мобильным госпитальным роботам и в ряде европейских стран. Во Франции и Италии ряд ведущих робототехнических и электронных компаний включились в разработку роботизированных систем для транспортировки продуктов, как в госпитале, так и в офисе. Ведутся работы по созданию роботов для эвакуации раненых из зон природных и техногенных катастроф.

Клинические роботы.

Клинические роботы предназначены для решения трех главных задач: диагностики заболеваний, терапевтического и хирургического лечения.

Ряд существующих диагностических систем с изображением на экране исследуемой области (например томографический прибор, управляемый от ЭВМ), уже использует элементы мехатроники и робототехники. Предполагается, что массовое появление медицинских приборов различного назначения, управляемых ЭВМ, окажет сильное влияние на врачебную практику.

В Японии запатентован микроманипулятор, предназначенный для проведения медицинских и биологических исследований на клеточном уровне, позволяющий измерять электрическое сопротивление клетки, делать микроинъекции в клетку медицинских препаратов и ферментов, менять конструкцию клетки и извлекать ее содержимое.

Другой областью применения роботов является радиотерапия, где они используются в целях понижения уровня радиационной опасности для медицинского персонала. Использование роботов считается наиболее целесообразным при проведении замены нескольких дорогостоящих стационарных радиоактивных источников во многолучевых установках. Разработка манипуляторов для радиотерапевтических отделений находится в экспериментальной фазе. На этой же фазе находятся работы по созданию робота – массажера.

Существует ряд сложных хирургических операций, выполнение которых сдерживается отсутствием опытных хирургов, поскольку такие операции требуют высокой точности исполнения. Например, в микрохирургии глаза существует такая операция, как радиальные разрезы роговой оболочки (radial keratotomy ), с помощью которой можно корректировать фокусное расстояние глаза при устранения близорукости. Идеальная глубина надреза оболочки глаза должна не превышать 20 мкм. Опытный хирург при проведении этой операции может выполнять надрезы на глубину 100 мкм. В Канаде разрабатывается медицинский робототехнический комплекс, способный делать высокоточные надрезы на глазной роговице и обеспечивать нужную кривизну глаза. Другим примером исполнения хирургических операций высокой точности является микронейрохирургия. В Великобритании уже разработан медицинский робот для микрохирургии мозга.

Созданный в США медицинский робот с манипулятором «Пума» продемонстрировал возможность извлечения кусочка ткани головного мозга для проведения биопсии. С помощью специального сканирующего устройства с трёхмерной системой отображения информации определялись место и скорость ввода двухмиллиметрового сверла для забора образцов мозговой ткани.

Во Франции разрабатывается медицинский робот – ассистент для оказания помощи при проведении хирургических операций на позвоночнике, когда любая ошибка хирурга может привести к полной парализации пациента. В Японии созданный медицинский робот продемонстрировал возможность трансплантации роговицы глаза, взятой у мертвого донора.

К достоинствам медицинских роботов относится их способность воспроизводить требуемую последовательность сложных движений исполнительных инструментов. В Великобритании продемонстрирован медицинский робот – тренажер для обучения врачей и моделирования процессов хирургических операций на простате, в ходе которых производится серия сложных надрезов в различных направлениях, последовательность исполнения которых трудна для запоминания и выполнения.

В США запатентована роботизированная система для помощи хирургу при выполнении операций на костях. Данная система применяется в ортопедических операциях, при которых важнейшим является точное позиционирование инструмента относительно коленного сустава. Роботизированная система состоит из операционного стола, неподвижного устройства, робота, контроллера и супервизора. Пациент размещен так, чтобы бедро было неподвижно закреплено внутри устройства. Другое бедро пациента закреплено к операционному столу ремнями.

Основание робота прочно закрепляется на операционном столе. Инструмент устанавливается на роботе, манипулятор которого может перемещаться имея 6 степеней подвижности. Манипулятор содержит позиционно – сенсорное устройство для выработки сигналов, указывающих положение манипулятора относительно координатной системы. В составе робота используется серийный манипулятор PUMA 200, который благодаря своей относительной простоте легко адаптируется к хирургическим операциям. Контроллер отслеживает все все движения робота и передает их на супервизор. Команды на перемещения и управление вспомогательными операциями, вырабатываемые контроллером, передаются роботу сигналами позиционирования, поступающими по соединительным кабелям.

Существует несколько способов управления движением робота. При изготовлении робот оснащается дополнительным устройством с учебной программой. Устройство для обучения представляет собой прибор с полуавтоматическим управлением маневрированием робота. Маневрирование состоит из серии отдельных шагов – перемещений. Контроллер записывает эти шаги так, чтобы робот мог затем сам повторить их. Для управления роботом могут применяться речевые команды или другой тип управления. Робот может перемещаться и пассивным образом, для чего в манипуляторе предусмотрено ручное управление движением.

Супервизор, так же как и контроллер, обеспечивается управляющими командами и программами на языке VAL – 11. При работе с супервизором все команды на движение проходят через контроллер. Перед дисплеем устанавливается специальный экран, известный под торговой маркой « Touch window » (TSW ), который используется в качестве прибора для ввода команд в процессе операции. Все изменения на кости отображаются на экране монитора. В операционной этот экран покрывается стерильной пленкой, что позволяет хирургу непосредственно управлять хирургическим операционным процессом. Программы операций базируются на геометрических соотношениях между параметрами протеза, параметрами костных разрезов и осями сверления отверстий. Робот будет перемещать инструмент по определенным позициям в соответствующих плоскостях. Началом системы координат будет некоторая фиксированная точка на опорной поверхности.

В последние годы в области автоматизации хирургических процессов появились сообщения о попытках создания роботизированных систем для дистанционной хирургии с помощью телевизионных установок, когда хирург и пациент разделены большими расстояниями.

К числу наиболее актуальных задач относится диагностика и хирургия сосудистых заболеваний. В Японии, Италии, России ведутся работы по созданию мобильных микророботов, предназначенных для разрушения атеросклеротических отложений в кровеносных сосудах. Предполагается, что мобильные микророботы будут работать в автоматическом режиме, перемещаясь по анатомическому руслу кровеносной системы.

В настоящее время в МГТУ им. Н.Э. Баумана ведутся работы по созданию роботизированной системы, позволяющей решать эти задачи. Система включает артериальный носитель – микроробот, способный перемещаться по кровеносному руслу и оснащенному ультразвуковым микродатчиком, а также необходимым рабочим инструментом. Функциональная схема этой системы приведена на рис.2. Хирург – оператор, получая информацию о состоянии сосуда, имеет возможность с помощью микроробота осуществлять процедуры как медикаментозного, так и хирургического характера.

В Канаде проводятся экспериментальные исследования телеоператора – робота для лапароскопических операций. Новая медицинская технология основана на применении миниатюрной камеры и специальных инструментов, вводимых через брюшную стенку. Видеоизображение передается на монитор, и ассистент координирует движения оперирующей группы в заданном направлении. Положение миниатюрной видеокамеры в брюшной полости координируется с помощью манипулятора, управляемого хирургом.

Рисунок 2. Функциональная схема робототехнической системы для внутрисосудистой диагностики и хирургии

Отметим, что клинические робототехнические системы являются эргатическими т.е. функционируют при участии оператора. Высокий уровень технологий позволяет существенно расширить возможности оперативного вмешательства. Примером может служить дистанционно управляемая манипуляционная система для проведения операций на сердце. В последнем случае хирург получает возможность проводить операции с разрешением, в 2-3 раза меньшим, чем позволяет его рука при непосредственной работе с инструментом. Следует подчеркнуть, что подобного рода операции возможны только при достаточно высоком уровне информационных технологий, использовании активного интерфейса и экспертных систем, обеспечивающих диалог хирурга с робототехнической системой на протяжении всей операции, контролирующих его действия и предотвращающих возможные ошибки. Наряду с непосредственным управлением движением мини – манипуляторами и микророботами с помощью органов ручного управления хирург имеет возможность использовать речевые команды для управления как рабочим инструментом, так и средствами информационного обеспечения. Таким образом, использование клинических робототехнических систем позволяет не только отказаться в ряде случаев от традиционных медицинских технологий, но и существенно облегчить условия труда хирурга и врача – диагноста.

Заключение.

Из вышеизложенного следует, что медицинская мехатроника находится в состоянии быстрого подъема, темпы которого значительно выше, чем в традиционных областях мехатроники. Вместе с тем необходимо упомянуть и о факторах, сдерживающих применение мехатронных устройств в медицинской практике, которые справедливы не только для России, но и для всех развитых стран. Важнейшим среди них является психологический фактор, связанный с дегуманизацией медицинского обслуживания и проявляющийся не только со стороны пациентов, но и со стороны медицинского персонала. Этот фактор вызывает отторжение идеи применения мехатроники для столь деликатной сферы, как организм человека. Его преодоление требует отношения к мехатронике, в первую очередь, как к средству, инструменту медицинской практики врача, хирурга. Необходимо обратить внимание на обеспечение надежности мехатронных систем и их безопасность для пациента.

Другим сдерживающим фактором является разобщенность и неполное взаимное понимание специалистов в области техники и медицины. Это обстоятельство требует подготовки специалистов нового типа, владеющих не только инженерными знаниями, но и хорошо знакомыми с особенностями медицинских технологий. Необходимо обратить внимание на тот факт, что в настоящее время еще не сложилась в полной мере биотехническая методология, предусматривающая системный подход к проектированию мехатроных медицинских систем.

Наиболее трудноразрешимая задача, возникающая при проектировании медицинских мехатронных систем, заключается в согласовании между собой отдельных элементов системы. При этом можно выделить следующие условия совместимости:

  1. биофизическая совместимость характеристик биологического объекта и технических элементов мехатронной системы;
  2. информационная совместимость мехатронной системы и оператора системы;
  3. эргономическая совместимость мехатронной системы по отношению как к оператору, так и к пациенту;
  4. психологическая совместимость технической части системы с оператором и пациентом.

Соблюдение этих условий позволит уже в ближайшее время преодолеть факторы, сдерживающие широкое применение мехатронных систем в медицинской практике.


Медицинские роботы

Реабилита- ционные

ервисные

Клинические

Протезы

Манипуляторы

Автоматическое рабочее место

Диагностика

Поводырь

Терапия

Хирургия

Эвакуация пострадавших

Уход за больными

Хирург - оператор

Система безопасности

Ручное управление

Компьютер

Монитор

Интерфейс связи

Система внедрения

Микроробот

Ультразвуковой датчик

Микродвигатель

Хирургический инструмент

Кровеносный сосуд

Биологический объект

Состояние пациента

АРМХ

Другие похожие работы, которые могут вас заинтересовать.вшм>

18942. Реабилитации детей-инвалидов в отделении дневного пребывания (на примере Республиканского центра реабилитации детей с ограниченными возможностями «Идегел» республики Тыва) 63.62 KB
Именно поэтому решение проблем детей-инвалидов на сегодняшний день является одним из важнейших необходимых действий социальной политики государства социальных учреждений специалистов по социальной работе и общественных организаций. Создание условий для успешной социализации детей-инвалидов в современном обществе - это задача не только государственных и социальных учреждений но и общественных организаций. В России как и во всем мире наблюдается тенденция роста числа детей-инвалидов. в органах социальной защиты населения состояло на...
11800. ПРОБЛЕМА РЕАБИЛИТАЦИИ ДЕТЕЙ-ИНВАЛИДОВ В ОТДЕЛЕНИИ ДНЕВНОГО ПРЕБЫВАНИЯ 64.55 KB
Сегодня в России, согласно официальным статистическим данным, проживает более 8 миллионов инвалидов, и ожидается дальнейший численный рост этой группы. Кроме них есть миллионы людей с ограниченными возможностями, не имеющие официального, юридически оформленного статуса инвалидов. Известно, что таким людям значительно труднее, чем здоровым, адаптироваться в постоянно меняющейся ситуации. Им нужна для этого квалифицированная помощь.
9210. Клинические роботы 10.48 KB
Манипулятор содержит позиционно – сенсорное устройство для выработки сигналов указывающих положение манипулятора относительно координатной системы. Началом системы координат будет некоторая фиксированная точка на опорной поверхности. Предполагается что мобильные микророботы будут работать в автоматическом режиме перемещаясь по анатомическому руслу кровеносной системы. Баумана ведутся работы по созданию роботизированной системы позволяющей решать эти задачи.
5561. Промышленные роботы 704.93 KB
Среди самых распространённых действий совершаемых промышленными роботами можно назвать следующие: перемещение деталей и заготовок от станка к станку или от станка к системам сменных палет; сварка швов и точечная сварка; покраска; выполнение операций резанья с движением инструмента по сложной траектории...
1933. Манипуляционные роботы 648.12 KB
Манипуляционный робот состоит из манипулятора исполнительных устройств устройств очувствления устройств связи с оператором и ЭВМ. Их также называют автоматическими программными манипуляторами или промышленными роботами. Характерной особенностью интеллектуальных роботов является их способность вести диалог с человеком распознавать и анализировать сложные ситуации планировать движения манипулятора и осуществлять их реализацию в условиях ограниченной информации о внешней среде. Управление манипуляторами этого типа роботов...
9211. Промышленные и мобильные роботы 412.87 KB
В энциклопедическом словаре роботом называется автоматическая система машина оснащенная датчиками воспринимающими информацию об окружающей среде и исполнительными механизмами способная с помощью блока управления целенаправленно вести себя в изменяющейся обстановке. Роботы можно классифицировать по: областям применения – производственные промышленные военные боевые обеспечивающие исследовательские медицинские; среде обитания эксплуатации – наземные подземные надводные подводные воздушные космические; степени...
2414. Спортивно-медицинская классификация инвалидов 37.08 KB
Лекция Тема: Спортивномедицинская классификация инвалидов Дисциплина: Врачебный контроль в адаптивной физической культуре Специальность: 032102 специалист по адаптивной физической культуре Факультет очного обучения педагогический Разработала: Флянку И. Спортивномедицинская классификация спортсменовинвалидов с врожденными и ампутационными дефектами конечностей 9 классов. Спортивномедицинская классификация спортсменовинвалидов с последствиями травм позвоночника и спинного мозга 6 классов. Спортивномедицинская классификация...
7805. СОЦИАЛЬНАЯ АДАПТАЦИЯ ПОЖИЛЫХ И ИНВАЛИДОВ 17.99 KB
Стадии социальной адаптации. Механизмы социальной адаптации. Напротив понятия адаптация и адаптационный процесс используются сегодня в биологии и социальной психологии философии и кибернетике социологии и экологии и т. Это происходит в первую очередь в силу динамичного характера социальной жизни приводящего к постоянным изменениям среды жизнедеятельности человека.
17536. Сестринский процесс в реабилитации пациентов перенесших ОНМК 133.15 KB
Сестринский процесс в поэтапной реабилитации постинсультных пациентов определяет основные направления мероприятий которые способствуют улучшению их качества жизни пациента. Выявление этих симптомов является частью работы по постановке сестринского диагноза и выявления основных проблем пациента. Таким образом основными проблемами пациента вострый период инсульта являются: боль головная боль боль в парализованных конечностях. Медицинская реабилитация в первую очередь показана пациентам у которых вследствие заболевания имеется высокий...
20367. ВЛИЯНИЕ ВОЗРАСТНОГО ФАКТОРА НА РЕЗУЛЬТАТЫ РЕАБИЛИТАЦИИ ПАЦИЕНТОВ С НЕВРОЛОГИЧЕСКОЙ ПАТОЛОГИЕЙ 851.54 KB
Оценка эффективности анализа лечения и реабилитации пациентов. Острые нарушения мозгового кровообращения являются одной из причин стойкой утраты трудоспособности населения во всем мире. Инсульт является одной из основных причин инвалидизации взрослого населения поскольку даже в случае своевременного оказания...

Такое оборудование, как тренажеры для реабилитации и физиотерапии, используется в лечебных целях для восстановления пациентов после операций и травм, а также для предупреждения функциональных нарушений организма.

ООО «М.П.А. медицинские партнеры» предлагает высокотехнологичные реабилитационное и физиотерапевтическое оборудование известных мировых брендов. Также мы осуществляем проектирование специализированных кабинетов в стационарах, поликлиниках, санаториях, спортивных центрах, фитнес-клубах и послепродажное обслуживание тренажеров.

Оборудование для реабилитации в нашей компании

  • Аппараты для реабилитации и физиотерапии, спортивной и эстетической медицины. Многофункциональные тренажеры на основе электрического, ультразвукового, лазерного, магнитного, микро- и коротковолнового воздействия используются для улучшения микроциркуляции, регенерации и трофики тканей. Роботизированные кровати-вертикализаторы, сенсорные беговые дорожки, силовые и кардиотренажеры имеют множество настроек и легко подстраиваются под физиологические особенности каждого пациента.
  • Гидротерапевтическое и бальнеологическое оборудование. Души и ванны с опцией гидромассажа, ванны на основе грязей, минеральных и термальных вод обеспечивают проведение эффективных терапевтических и СПА-процедур.
  • Стабилометрические системы. Тренажеры с обратной биологической связью по опорной реакции способствуют восстановлению двигательной активности лежачих, частично обездвиженных и амбулаторных пациентов.
  • Оборудование для ударно-волновой терапии. Аппараты для генерации акустических волн оснащены широким набором аппликаторов и насадок, направленно воздействующих на проблемные места пациентов с урологическими, неврологическими, ортопедическими и другими заболеваниями.
  • Уродинамические системы. Полностью компьютеризированное оборудование обеспечивает эффективные тренировки мышц тазового дна. Сохранение данных о сеансах помогает отслеживать динамику реабилитации каждого пациента.

Самое обсуждаемое
Словарь морфем С одним н
 пишется суффикс
 -ин
-
 в прилагательных, например: соловьиный, куриный, гостиный, а также в существительном гостиница Словарь морфем С одним н пишется суффикс -ин - в прилагательных, например: соловьиный, куриный, гостиный, а также в существительном гостиница
Виды связи предложений в тексте Виды связи предложений в тексте
Анализ японских свечей – сборник фигур разворота Анализ японских свечей – сборник фигур разворота


top