Основные типы деления клеток. Виды клеточного деления. Краткая характеристика амитоза

Основные типы деления клеток. Виды клеточного деления. Краткая характеристика амитоза

Митоз - наиболее распространенный способ репродукции клеток. Универсальность этого способа деления клеток связана с тем, что он обеспечивает образование генетически равноценных клеток и сохраняет преемственность хромосом в ряду клеточных поколений.

Биологическое значение митоза:

1. Равномерное распределение генетического материала.

2. Образование идентичных с материнской двух дочерних клеток с диплоидным набором хромосом.

3. Обеспечивает рост и регенерацию.

4. Обеспечивает бесполое размножение.

5. Является способом деления соматических клеток.

В процессе митоза последовательно протекают фазы: профаза, прометафаза, метафаза, анафаза, телофаза.

Профаза - происходит спирализация, укорочение, утолщение хроматиновых нитей. Наблюдается удвоение центриолей и расхождение их к полюсам. Начало образования нитей веретена деления. В конце – наблюдается разрушение ядрышка и ядерной оболочки. Генетическая характеристика: 2n 2 хроматиды 4С.

Метафаза - хромосомы в животных клетках располагаются в упорядоченном состоянии в области экватора. Образуется метафазная пластинка. В растительных клетках хромосомы лежат неупорядоченно. Завершается образование нитей веретена деления. Хромосомы связаны центромерами с нитями веретена деления. Нити веретена, которые крепятся к хромосомам, называются хромосомными, а которые идут к полюсам - непрерывными. Генетическая характеристика: 2n 2 хроматиды 4С.

Анафаза - хромосомные нити веретена сокращаются. К противоположным полюсам расходятся хроматиды, которые принято называть дочерними хромосомами. На каждом полюсе генетическая характеристика: 2n 1хроматида 2С.

Телофаза - дочерние хромосомы, разошедшиеся к полюсам, деспирализуются, теряют ясные очертания, вокруг них формируются ядерные оболочки, восстанавливается ядрышко. Клеточный центр теряет активность. Начинается цитокинез - деление цитоплазмы. Итогом деления является образование двух диплоидных клеток.

Деление в растительной и животной клетках происходит сходно. Но в клетках высших растений отсутствует клеточный центр. Цитотомия в животных клетках происходит путем перетяжки (образование борозды), которая, углубляясь, делит клетку на две части. В клетках растений формируется в центре срединная пластинка, которая затем растет к периферии.

Митотический цикл клетки - совокупность процессов подготовки клеток к делению и само митотическое деление. Если дочерние клетки, или клетка, сразу же приступают к подготовке к следующему митозу, то их митотический цикл совпадает с жизненным циклом (ткани эмбриона). В других случаях дочерние клетки подвергаются дифференцировке и выполняют различные функции (пресинтетический период удлиняется). Их жизненный цикл заканчивается смертью клетки (у нервных клеток G1 - в течение всей жизни).

Продолжительность каждого из периодов митотического цикла и фаз митоза различна и длится от нескольких минут до нескольких часов, что зависит от ряда причин: типа тканей, физиологического состояния организма, внешних факторов (t, свет, химические вещества). Так суточный ритм митотической активности у ночных животных характеризуется max и min митозов - утром, у дневных - в вечерние часы. Оказывают влияние и факторы внутренней среды: нейрогуморальные механизмы, осуществляемые нервной системой и гормонами, а также продукты распада тканей.

Важную роль играют факторы, обеспечивающие возможность вступления клеток в деление. Четко доказано, что все синтетические процессы в клетке, готовящейся к делению, находятся под контролем ее генетического аппарата. Гены, контролирующие этот процесс, находятся в разных хромосомах. Активность генов объясняется гипотезой Жакоба и Мано (1961). Советские ученые Л. Н. Бляхер (1954), И. А. Уткин (1959) показали важную роль нейрогуморальной регуляции митотической активности. Они установили, что рефлекторный характер регуляции клеточных делений влияет опосредованно - через сдвиг гормонального равновесия. Установлено, что усиление секреции адреналином тормозит митотическую активность, тогда как гормоны щитовидной железы вызывают усиление митоза. Удаление надпочечников приводит к выключению эффекта торможения митоза. На митотический цикл также влияют: суточный ритм митотический активности, факторы внешней среды (свет, температура) нейрогуморальные механизмы, продукты распада тканей.

Эндомитоз – один из видов митоза, суть которого заключается в редупликации хромосом. Без разрушения ядерной оболочки и без деления клетки (образование полиплоидов). Вследствие этого в клетке происходит умножение числа хромосом, иногда в десятки раз по сравнению с исходным. Эндомитоз встречается в интенсивно функционирующих клетках различных тканей: клетках печени, тканях нематод, насекомых, ракообразных, в корешках некоторых растений. Допускают, что эндомитоз возникает в процессе эволюции, как один из вариантов митоза.

Политения – многократное воспроизведение в хромосомах количества хромонем без увеличения их числа в клетке. При политении выпадают все фазы митотического цикла, кроме репродукции хромонем. Политения встречается у двукрылых насекомых, инфузорий, некоторых растений. Используется для построения карт хромосом, а также обнаружения хромосомных перестроек.

Мейоз – деление, обеспечивающее образование половых клеток.

Значение мейоза

1. Обеспечивает образование половых клеток с гаплоидным набором хромосом.

2. Обеспечивает поддержание постоянства числа хромосом в кареотипе.

3. Обуславливает образование большого количества новых комбинаций генов.

4. Является источником комбинативной изменчивости.

5. Обеспечивает половое размножение.

Состоит из двух последовательных делений:

1. Мейоз 1 редукционное;

2. Мейоз II эквационное.

Мейоз 1.

Профаза 1 – 5 стадий: 2n 2хр 4С.

Лептотена - хромосомы формы нитей, различимых в микроскоп.

Зиготена – конъюгация (спаривание) гомологичных хромосом, образование бивалентов.

Пахитена – происходит обмен участками гомологичных хромосом - кроссинговер. И образование рекомбинантных генов.

Диплотена – отталкивание между гомологичными хромосомами в области центромер. Остаются связанными в области перекреста. Эти места называются хиазмами.

Диакенез – спирализация максимальная, биваленты располагаются по периферии ядра. Исчезает ядрышко и ядерная оболочка. Центриоли расходятся к полюсам, начало образования веретена деления.

Метафаза 1 – биваленты выстраиваются в экваториальной плоскости, центромерами прикрепляются к нитям веретена деления. Генетическая характеристика: 2n 2хр. 4С.

Анафаза 1 – расхождение гомологичных хромосом к полюсам клетки. На каждом полюсе формируется гаплоидный набор хромосом. Каждая хромосома состоит из 2 хроматид. Генетическая характеристика: n 2хр. 2С.

Телофаза 1 – характерна для клеток животных при этом образуются 2 клетки с гаплоидным набором. Клетки растений сразу переходят в мейоз II.

Между мейозом I и мейозом II наблюдается интеркинез, в котором репликация ДНК отсутствует.

Мейоз II – точная копия митоза.

Профаза 2 - непродолжительная.

Метафаза 2 - образование экваториальной пластинки.

Анафаза 2 - расхождение сестринских хроматид. n 1 хр. 1С

Телофаза 2 - формирование ядер, деление цитоплазмы и образование 4 гаплоидных клеток. n 1 хр. 1С

Амитоз, или прямое деление, представляет собой деление ядра без подготовки аппарата деления, спирализации хромосом. Хромосомы распределяются произвольно.

Прямое деление характеризуется первоначально перешнуровкой ядрышка, затем ядра и цитоплазмы. Ядро может делиться на две равномерные части - равномерный амитоз, или две неравномерные части - неравномерный амитоз, либо ядро делится на несколько частей - фрагментация, шизогония. Иногда после деления ядра цитоплазма не делится, и возникают многоядерные клетки - амитоз без цитотомии. В зависимости от факторов, обуславливающих амитоз, выделяют три его вида: генеративный, реактивный, дегенеративный.

Генеративный амитоз отмечается при делении высоко специализированных полиплоидных клеток. Наблюдается у инфузории при делении макронуклеуса, а также в некоторых клетках млекопитающих (печени, эпидермиса).

Реактивный амитоз выявляется при различных повреждающих воздействиях: ионизирующего облучения, нарушении обменных процессов, голодании, нарушении нуклеинового обмена и денервации ткани. Этот вид амитоза обычно не завершается цитотомией и приводит к образованию многоядерных клеток. Вероятно, его следует рассматривать как компенсаторную реакцию, приводящую к увеличению поверхности обмена между ядром и цитоплазмой.

Дегенеративный амитоз возникает в стареющих клетках с угасающими жизненными свойствами. Этот вид представлен фрагментацией и почкованием ядер. Он не имеет отношения к репродукции клеток. Появление дегенеративных форм амитоза служит одним из признаков некробиотических процессов.

Прямое бинарное деление – характерно для прокариот. Включает репликацию кольцевой ДНК и далее – деление цитоплазмы с образованием двух клеток.

Вопрос 6

Клеточная пролиферация – увеличение числа клеток путем митоза, приводящее к росту ткани, в отличие от другого способа увеличения ее массы (например, отек). У нервных клеток пролиферация отсутствует.

Во взрослом организме продолжаются процессы развития, связанные с делением и специализацией клеток. Эти процессы могут быть как нормальными физиологическими, так и направленными на восстановление организма вследствие нарушения его целостности.

Значение пролиферации в медицине определяется способностью клеток разных тканей к делению, с делением клеток связан процесс заживления ран и восстановление тканей после хирургических операций.

Пролиферация клеток лежит в основе регенерации (восстановления) утраченных частей. Проблема регенерации представляет интерес для медицины, для восстановительной хирургии. Различают физиологическую, репаративную и патологическую регенерацию.

Физиологическая – естественное восстановление клеток и тканей в онтогенезе. Например, смена эритроцитов, кожного эпителия.

Репаративная – восстановление после повреждения или гибели клеток и тканей.

Патологическая – разрастание тканей не идентичных здоровым тканям. Например, разрастание рубцовой ткани на месте ожога, хряща - на месте перелома, размножение клеток соединительной ткани - на месте мышечной ткани сердца, раковая опухоль.

В последнее десятилетие принято разделять клетки тканей животных по способности к делению на три группы:

1. Лабильные.

2. Стабильные.

3. Статические.

К лабильным относятся клетки, которые быстро и легко обновляются в процессе жизнедеятельности организма (клетки крови, эпителия, слизистой ЖКТ, эпидермиса и др.).

К стабильным относят клетки таких органов, как печень, поджелудочная железа, слюнные железы и др., которые обнаруживают ограниченную способность к размножению. Последняя, проявляется обычно при повреждении органа.

К статическим клеткам относят клетки поперечно-полосатой мышечной и нервной ткани, клетки которые, как считает большинство исследователей, не делятся.

Изучение физиологии клетки имеет важное значение для понимания онтогенетического уровня организации живого, механизмов саморегуляции клетки, обеспечивающих целостную функцию всего организма.


Похожая информация.


Чередование поколений с бесполым и половым размножением

Большинство организмов, обычно размножающихся бесполым путем, способно к половому размножению. При этом ряд поколений с бесполым размножением сменяется поколением особей, размножающихся с помощью гамет или же осуществляющих половой процесс. Вслед за этим вновь наблюдается бесполое размножение. Смена (чередование ) половых и бесполых поколений происходит у разных видов с разной периодичностью, регулярно или через неодинаковые промежутки времени.

Первичное чередование поколений заключается в смене полового размножения спорообразованием. Оно наблюдается у представителей классов споровиков, жгутиконосцев, некоторых растений и отражает сохранение в филогенезе соответствующих организмов как более древней (бесполой), так и более прогрессивной (половой) форм размножения. Вторичное чередование поколений заключается в переходе на некоторых стадиях жизненного цикла к бесполому или партеногенетическому размножению животных, освоивших половое размножение. Оно распространено у кишечнополостных, членистоногих.

Включение в цикл развития организмов, размножающихся преимущественно бесполым путем, полового поколения время от времени активизирует комбинативную изменчивость и этим способствует преодолению генетического однообразия потомков, расширяя эволюционные и экологические перспективы группы.

Выделяют три способа деления эукариотических клеток:

1. Амитоз (или прямое деление клетки ), происходит в соматических клетках эукариот реже, чем митоз. Впервые он описан немецким биологом Р. Ремаком в 1841г., термин предложен гистологом В. Флеммингом позднее – в 1882г. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и др.). При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует. Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

2. Мито́з (от греч. mitos - нить) - непрямое деление клетки, кариокинез, наиболее распространенный способ репродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении реплицированных хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений.



3. Мейоз (от греч. meiosis - уменьшение) или редукционное деление клетки - деление ядра эукариотической клетки с уменьшением числа хромосом в два раза.

Жизненный цикл клетки .

Жизненный цикл клетки представляет собой промежуток времени от момента возникновения клетки в результате деления до ее гибели или до последующего деления.

В это время клетка растет, специализируется и выполняет свои функции в составе ткани и органов многоклеточного организма. В некоторых тканях, где клетки непрерывно делятся, жизненный цикл совпадает с митотическим циклом.

Совокупность последовательных и взаимосвязанных процессов в период подготовки клетки к делению, а также на протяжении самого митоза называется митотическим циклом.

Различают два периода Ж.Ц.: интерфазу и митоз. Интерфаза, в свою очередь, подразделяется на 3 этапа: предсинтетический, ситетический, постсинтетический. G1 следует сразу за делением. В это время в клетке происходит синтез и накопление РНК и белков, необходимые для образования клеточных структур. Это самый длительный период, когда клетка выполняет все необходимые ей функции. В S периоде происходит самоудвоение ДНК и поэтому к концу периода его количество удваивается. В G2 периоде идет накопление энергии в виде молекул АТФ, необходимой для последующего деления.

Деление клетки включает 2 этапа: деление ядра - кариокинез , деление цитоплазмы - цитокинез. Биологическое значение митоза заключается в точном идентичном распределении генетической информации между дочерними клетками. В процессе митоза последовательно протекает пять фаз: профаза, прометафаза, метафаза, анафаза, телофаза.

В начале профазы в ядре становятся видны тонкие нити - это профазные хромосомы. По мере спирализации ДНК хромосомы укорачиваются и утолщаются. Одновременно происходит разрушение ядрышка. Часть его расходуется на спирадизацию хромосом. К концу профазы хорошо видно, что каждая X состоит из 2-х хроматид, т.е. количество ДНК удвоено (2n4c). В это время происходит образование веретена деления. Профаза завершается распадом ядерной оболочки.

В прометафазе X располагаются свободно в цитоплазме в области бывшего ядра и начинают движение к экватору клетки, т.к. в центре цитоплазма разжижается и это способствует свободному перемещению X. Кроме этого, в цитоплазме продолжает формироваться веретено деления.

В метафазу X характеризуются пиком спирализации, щель между хроматидами максимальна, соединяются они только в области центромер. Хромосомы располагаются в области экватора и лежат в одной плоскости. Нити верете­на прикрепляются к центромерам.

Анафаза начинается с одновременного расхождения хроматид (сестрин­ских хромосом) к полюсам клетки.

Телофаза - стадия реконструкции дочерних ядер. В это время происходят процессы противоположные таковым в профазу. Хромосомы деспирализуются, востанавливается ядрышко и ядерная оболочка. Параллельно этому идет цитокинез. В клетках животных этот процесс начинается с образования в экваториальной зоне перетяжки, которая, все более углубляясь, отделяет наконец, сестринские клетки друг от друга. В клетках растений разделение цитоплазмы начинается во внутренней области материнской клетки. Здесь мелкие пузырьки ЭПС сливаются, образуя клеточную мембрану.

Клетка в своей жизни проходит разные состояния: фазу роста и фазы подготовки к делению и деления. Клеточный цикл – переход от деления к синтезу веществ, составляющих клетку, а затем опять к делению – можно представить на схеме в виде цикла, в котором выделяют несколько фаз.

Описано три способа деления эукариотических клеток: амитоз (прямое деление), митоз (непрямое деление) и мейоз (редукционное деление).

Амитоз – относительно редкий способ деления клетки. При амитозе интерфазное ядро делится путем перетяжки, равномерное распределение наследственного материала не обеспечивается. Нередко ядро делится без последующего разделения цитоплазмы и образуются двухъядерные клетки. Клетка, претерпевшая амитоз, в дальнейшем не способна вступать в нормальный митотический цикл. Поэтому амитоз встречается, как правило, в клетках и тканях, обреченных на гибель.

Митоз. Митоз, или непрямое деление, - основной способ деления эукариотических клеток. Митоз – это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и был в родительском ядре. Имеющиеся в клетке хромосомы удваиваются, выстраиваются в клетке, образуя митотическую пластинку, к ним прикреплены нити веретена деления, которые растягиваются к полюсам клетки и клетка делится, образуя две копии исходного набора.

Рис.1. Митоз и мейоз

При образовании гамет, т.е. половых клеток – сперматозоидов и яйцеклеток – происходит деление клетки, называемое мейозом. Исходная клетка имеет диплоидный набор хромосом, которые затем удваиваются. Но, если при митозе в каждой хромосоме хроматиды просто расходятся, то при мейозе хромосома (состоящая из двух хроматид) тесно переплетается своими частями с другой, гомологичной ей хромосомой (также состоящей из двух хроматид), и происходит кроссинговер - обмен гомологичными участками хромосом. Затем уже новые хромосомы с перемешанными «мамиными» и «папиными» генами расходятся и образуются клетки с диплоидным набором хромосом, но состав этих хромосом уже отличается от исходного, в них произошла рекомбинация. Завершается первое деление мейоза, и второе деление мейоза происходит без синтеза ДНК, поэтому при этом делении количество ДНК уменьшается вдвое. Из исходных клеток с диплоидным набором хромосом возникают гаметы с гаплоидным набором. Из одной диплоидной клетки образуются четыре гаплоидных клетки. Фазы деления клетки, которые следуют за интерфазой, называются профаза, метафаза, анафаза, телофаза и после деления опять интерфаза.

Рис.2. Фазы деления клетки

Профаза – самая длительная фаза митоза, когда происходит перестройка всей структуры ядра для деления. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные (удвоение происходит в S-периоде интерфазы), состоят из двух хроматид, связанных между собой в области первичной перетяжки осбой структурой – цетромерой. Одновременно с утолщением хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. Начинается формирование ахромативного веретена – веретена деления, которое представляет систему нитей, идущих от полюсов клетки. Нити веретена имеют диаметр около 25нм. Это пучки микротрубочек, состоящих из субъедениц белка тубулина. Микротрубочки начинают формироваться со стороны центриолей либо со стороны хромосом (в клетках растений).


Метафаза. В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и ценросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т.е. располагаются на равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную, или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. Именно в этот период легко подсчитать число хромосом, изучать их морфологические особенности.

Анафаза начинается делением центромеры. Каждая из хроматид одной хромосомы становится самостоятельной хромосомой. Сокращение тянущих нитей ахроматинового веретена увлекает их к противоположным полюсам клетки. В результате у каждого из полюсов клетки оказывается столько же хромосом, сколько было их в материнской клетке, причем набор их одинаков.

Телофаза – последняя фаза митоза. Хромосомы деспирализуются, становятся плохо заметными. На каждом из полюсов вокруг хромосом воссоздается ядерная оболочка. Формируются ядрышки, веретено деления исчезает. В образовавшихся ядрах каждая хромосома состоит теперь всего из одной хроматиды, а не из двух.

Каждое из вновь образовавшихся ядер получило весь объем генетической информации, которым обладала ядерная ДНК материнской клетки. В результате митоза оба дочерних ядра имеют одинаковое количество ДНК и одинаковое число хромосом, такое же, как в материнском.

Цитокинез – после образования в телофазе двух новых ядер происходит деление клетки и формирование в экваториальной плоскости перегородки – клеточной пластинки.

В ранней телофазе между двумя дочерними ядрами, не достигая их, формируется цилиндрическая система волокон, называемая фрагмопластом, которая также как и волокна ахроматинового веретена, состоит из микротрубочек и связаны с ним. В центре фрагмопласта на экваторе между дочерними ядрами скапливаются пузырьки Гольджи, содержащие пектиновые вещества. Они сливаются друг с другом и дают начало клеточной пластинке, а их мембраны участвуют в построении плазмолемм по обеим сторонам пластинки. Клеточная пластинка закладывается в виде диска, взвешенного в фрагмопласте. Волокна фрагмопласта, видимо, контролируют направление движения пузырьков Гольджи. Клеточная пластинка растет центробежно по направлению к стенкам материнской клетки за счет включения в нее полисахаридов все новых и новых пузырьков Гольджи. Клеточная пластинка имеет полужидкую консистенцию, состоит из аморфного протопектина и пектатов магния и кальция. В это время из трубчатого ЭР образуются плазмодесмы. Расширяющийся фрагмопласт постепенно приобретает форму бочонка, позволяя клеточной пластинке расти латерально, пока она не соединится со стенками материнской клетки. Фрагмопласт исчезает, обособление двух дочерних клеток заканчивается. Каждый протопласт откладывает на клеточную пластинку свою первичную клеточную стенку.

Цитокинез с помощью клеточной пластинки происходит у всех высших растений и некоторых водорослей. У остальных организмов клетки делятся внедрением клеточной оболочки, которая постепенно углубляется и разделяет клетки.

Биологическое значение митоза состоит в строго одинаковом распределении между дочерними клетками материальных носителей наследственности – молекул ДНК, входящих в состав хромосом. Благодаря равномерному разделению реплицированных хромосом между дочерними клетками обеспечивается образование генетически равноценных клеток и сохраняется преемственность в ряду клеточных поколений. Это обеспечивает таки важные моменты жизнедеятельности, как эмбриональное развитие и рост организмов, восстановление органов и тканей после повреждения. Митотическое деление клеток является также цитологической основой бесполого размножения организмов.

Мейоз. Мейоз – это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое и переход клеток из диплоидного состояния (2n) в гаплоидное (n). Мейоз – единый, непрерывный процесс состоящий из двух последовательных делений, каждое из которых можно разделть на те же, что и в митозе, четыре фазы: профазу, метафазу, анафазу и телофазу. Обоим делениям предшествует одна интерфаза. В синтетическом периоде интерфазы до начала мейоза удваивается количество ДНК и каждая хромосома становится двухроматидной.

Первое мейотическое, или редукционное, деление.

Профаза I продолжается от нескольких часов до нескольких недель. Хромосомы спирализуются. Гомологичные хромосомы коньюгируют, образуя пары – биваленты. Бивалент состоит из четырех хроматид двух гомологичных хромосом. В бивалентах осуществляется кроссинговер – обмен гомологичными участками гомологичных хромосом, что приводит к их глубокому преобразованию. Во время коссинговера происходит обмен блоками генов, что объясняет генетическое разнообразие потомства. К концу профазы исчезает ядерная оболочка и ядрышко, формируется ахроматиновое веретено.

Метафаза I – биваленты собираются в экваториальной плоскости клетки. Ориентирование материнской и отцовской хромосомы из каждой гомологичной пары к одному или другому полюсу веретена деления является случайным. К центромере каждой из хромосом присоединяется тянущая нить ахроматинового веретена. Две сетринские хроматиды не разделяются.

Анафаза I – происходит сокращение тянущих нитей, и к полюсам расходятся двухроматидные хромосомы. Гомологичные хромосмы каждого из бивалентов уходят к противоположным полюсам. Расходятся случайно перераспределенные гомологичные хромосомы каждой пары (независимое распределение), и на каждом из полюсов собирается половинное число (гаплоидный набор) хромосом, образуется два гаплоидных набора хромосом.

Телофаза I – у полюсов веретена собирается одиночный, гаплоидный, набор хромосом, в котором каждый вид хромосом представлен уже не парой, а одной хромосомой, состоящей из двух хроматид. В короткой по продолжительности телофазе I восстанавливается ядерная оболочка, после чего материнская клетка делится на две дочернии.

Второе мейотическое деление следует сразу же после первого и сходно с обычным митозом (поэтому его часто называют митозом мейоза), только клетки, вступающие в него, несут гаплоидный набор хромосом.

Профаза II – непродолжительная.

Метафаза II – снова образуется веретено деления, хромосомы выстраиваются в экваториальной плоскости и центормерами прикрепляются к микротрубочкам веретена деления.

Анафаза II – осуществляется разделение их ценромер и каждая хроматида становится самостоятельной хромосомой. Отделившиеся друг от друга дочерние хромосомы направляются к полюсам веретена.

Телофаза II – завершается расхождение сестринских хромосом к полюсам и наступает деление клеток: из двух гаплоидных клеток образуются 4 клетки с гаплоидным набором хромосом.

Редукционное деление является как бы регулятором, препятствующим непрерывному увеличению числа хромосом при слиянии гамет. Не будь такого механизма, при половом размножении число хромосом удваивалось бы в каждом новом поколении. Т.е. благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях каждого вида растений, животных, протист и грибов. Другое значение заключается в обеспечении разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их расхождении в анафазе I мейоза. Это обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.

Деление клетки является центральным моментом размножения.

В процессе деления из одной клетки возникают две. Клетка на основе ассимиляции органических и неорганических веществ создает себе подобную с характерным строением и функциями.

В делении клетки можно наблюдать два основных момента: деление ядра - митоз и деление цитоплазмы - цитокинез, или цитотомия. Основное внимание генетиков до сих пор приковывает митоз, поскольку, с точки зрения хромосомной теории, ядро считается «органом» наследственности.

В процессе митоза происходит:

  1. удвоение вещества хромосом;
  2. изменение физического состояния и химической организации хромосом;
  3. расхождение дочерних, точнее сестринских, хромосом к полюсам клетки;
  4. последующее деление цитоплазмы и полное восстановление двух новых ядер в сестринских клетках.

Таким образом, в митозе заложен весь жизненный цикл ядерных генов: удвоение, распределение и функционирование; в результате завершения митотического цикла сестринские клетки оказываются с равным «наследством».

При делении ядро клетки проходит пять последовательных стадий: интерфазу, профазу, метафазу, анафазу и телофазу; некоторые цитологи выделяют еще шестую стадию - прометафазу.

Между двумя последовательными делениями клетки ядро находится в стадии интерфазы. В этот период ядро при фиксации и Окраске имеет сетчатую структуру, образуемую красящимися тонкими нитями, которые в следующей фазе формируются в хромосомы. Хотя интерфазу называют иначе фазой покоящегося ядра , на самом теле метаболические процессы в ядре в этот период совершаются с наибольшей активностью.

Профаза - первая стадия подготовки ядра к делению. В профазе сетчатая структура ядра постепенно превращается в хромосомные нити. С самой ранней профазы даже в световом микроскопе можно наблюдать двойную природу хромосом. Это говорит о том, что в ядре именно в ранней или поздней интерфазе осуществляется наиболее важный процесс митоза - удвоение, или редупликация, хромосом, при котором каждая из материнских хромосом строит себе подобную - дочернюю. Вследствие этого каждая хромосома выглядит продольно удвоенной. Однако эти половинки хромосом, которые называются сестринскими хроматидами , в профазе не расходятся, так как удерживаются вместе одним общим участком - центромерой; центромерный участок делится позже. В профазе хромосомы претерпевают процесс скручивания по своей оси, что приводит к их укорочению и утолщению. Нужно подчеркнуть, что в профазе каждая хромосома в кариолимфе располагается случайно.

В клетках животных еще в поздней телофазе или очень ранней интерфазе происходит удвоение центриоли, после чего в профазе начинается схождение дочерних центриолей к полюсам и образований астросферы и веретена, называемого новым аппаратом. В это же время растворяются ядрышки. Существенным признаком окончания профазы является растворение оболочки ядра, в результате чего хромосомы оказываются в общей, массе цитоплазмы и кариоплазмы, которые теперь образуют миксоплазму. Этим заканчивается профаза; клетка вступает в метафазу.

В последнее время между профазой и метафазой исследователи стали выделять промежуточную стадию, называемую прометафазой . Прометафаза характеризуется растворением и исчезновением ядерной оболочки и движением хромосом к экваториальной плоскости клетки. Но к этому моменту еще не завершается образование ахроматинового веретена.

Метафазой называют стадию окончания расположения хромосом на экваторе веретена. Характерное расположение хромосом в экваториальной плоскости называют экваториальной, или метафазной, пластинкой. Расположение хромосом по отношению друг к другу является случайным. В метафазе хорошо выявляются число и форма хромосом, в особенности при рассмотрении экваториальной пластинки с полюсов деления клетки. Ахроматиновое веретено полностью сформировано: нити веретена приобретают плотную консистенцию чем остальная масса цитоплазмы, и прикрепляются к центромерному участку хромосомы. Цитоплазма клетки в этот период имеет наименьшую вязкость.

Анафазой называют следующую фазу митоза, в которой делятся хроматиды, которые теперь можно назвать уже сестринскими или дочерними хромосомами, расходятся к полюсам. При этом отталкиваются друг от друга в первую очередь центромерные участки, а затем расходятся к полюсам сами хромосомы. Нужно сказать, что расхождение хромосом в анафазе начинается одновременно - «как по команде» - и завершается очень быстро.

В телофазе дочерние хромосомы деспирализуются и утрачивают видимую индивидуальность. Образуются оболочка ядра и само ядро. Ядро реконструируется в обратном порядке по сравнению с теми изменениями, которые оно претерпевало в профазе. В конце концов восстанавливаются и ядрышки (или ядрышко), причем в том количестве, в каком они присутствовали в родительских ядрах. Число ядрышек является характерным для каждого типа клеток.

В это же время начинается симметричное разделение тела клетки. Ядра же дочерних клеток переходят в состояние интерфазы.

Нa рисунке выше приведена схема цитокинеза животной и растительной клеток. В животной клетке деление происходит путем перешнуровывания цитоплазмы материнской клетки. В растительной клетке формирование клеточной перегородки идет при участки бляшек веретена, образующих в плоскости экватора перегородку, называемую фрагмопластом. Этим заканчивается митотический цикл. Продолжительность его зависит, по-видимому, от типа ткани, физиологического состояния организма, внешних факторов (температуры, светового режима) и длится от 30 мин до 3 ч. По данным разных авторов, скорость прохождения отдельных фаз изменчива.

Как внутренние, так и внешние факторы среды, действующие на рост организма и его функциональное состояние, влияют на продолжительность клеточного деления и его отдельных фаз. Поскольку ядро играет огромную роль в метаболических процессах клетки, естественно полагать, что длительность фаз митоза может изменяться в соответствии с функциональным состоянием ткани органа. Например, установлено, что во время покоя и сна животных митотическая активность различных тканей значительно выше, чем в период бодрствования. У ряда животных частота клеточных делений на свету снижается, а в темноте увеличивается. Предполагают также, что на митотическую активность клетки влияют гормоны.

Причины, определяющие готовность клетки к делению, до сих пор остаются невыясненными. Есть основания предполагать несколько таких причин:

  1. удвоение массы клеточной протоплазмы, хромосом и других органелл, в силу чего нарушаются ядерно-плазменные отношения; для деления клетка должна достигнуть определенных веса и объема, характерных для клеток данной ткани;
  2. удвоение хромосом;
  3. выделение хромосомами и другими органеллами клетки специальных веществ, стимулирующих клеточное деление.

Механизм расхождения хромосом к полюсам в анафазе митоза также остается невыясненным. Активную роль в этом процессе, видимо, играют нити веретена, представляющие организованные и ориентированные центриолями и центромерами белковые нити.

Характер митоза, как мы уже говорили, меняется в зависимости от типа и функционального состояния ткани. Для клеток разных тканей характерны различные типы митозов, В описанном типе митоза деление клетки происходит равным и симметричным образом. В результате симметричного митоза сестринские клетки являются наследственно равноценными в отношении как ядерных генов, так и цитоплазмы. Однако, кроме симметричного, встречаются и другие типы митоза, а именно: асимметричный митоз, митоз с задержкой цитокинеза, деление многоядерных клеток (деление синцитиев), амитоз, эндомитоз, эндорепродукция и политения.

В случае асимметричного митоза сестринские клетки оказываются неравноценными по размеру, количеству цитоплазмы, а также в отношении их дальнейшей судьбы. Примером этого могут служить неодинакового размера сестринские (дочерние) клетки нейробласта кузнечика, яйцеклетки животных при созревании и при спиральном дроблении; при делении ядер в пыльцевых зернах одна из дочерних клеток может в дальнейшем делиться, другая - нет, и т. д.

Митоз с задержкой цитокинеза характеризуется тем, что ядро клетки делится многократно, и лишь затем происходит деление тела клетки. В результате такого деления образуются многоядерные клетки вроде синцития. Примером этого служит образование клеток эндосперма и образование спор.

Амитозом называют прямое деление ядра без образования фигур деления. При этом деление ядра происходит путем «перешнуровывания» его на две части; иногда из одного ядра образуется сразу несколько ядер (фрагментация). Амитоз постоянно встречается в клетках ряда специализированных и патологических тканей, например в раковых опухолях. Его можно наблюдать при воздействиях различных повреждающих агентов (ионизирующие излучения и высокая температура).

Эндомитозом называют такой процесс, когда происходит удвоение деления ядер. При этом хромосомы, как и обычно, репродуцируются в интерфазе, но последующее расхождение их происходит внутри ядра с сохранением ядерной оболочки и без образования ахроматинового веретена. В некоторых случаях хотя и растворяется оболочка ядра, однако расхождение хромосом к полюсам не осуществляется, вследствие чего в клетке происходит умножение числа хромосом даже в несколько десятков раз. Эндомитоз встречается в клетках различных тканей как растений, так и животных. Так, например, А. А. Прокофьева-Бельговская показала, что путем эндомитоза в клетках специализированных тканей: в гиподерме циклопа, жировом теле, перитонеальном эпителии и других тканях кобылки (Stenobothrus) - набор хромосом может увеличиваться в 10 раз. Такое умножение числа хромосом связано с функциональными особенностями дифференцированной ткани.

При политении происходит умножение числа хромосомных нитей: после редупликации по всей длине они не расходятся и остаются прилегающими друг к другу. В этом случае умножается число хромосомных нитей в пределах одной хромосомы, в результате диаметр хромосом заметно увеличивается. Число таких тонких нитей в политенной хромосоме может достигать 1000-2000. В этом случае образуются так называемые гигантские хромосомы. При политении выпадают все фазы митотического цикла, кроме основной - репродукции первичных нитей хромосомы. Явление политении наблюдается в клетках ряда дифференцированных тканей, например в ткани слюнных желез двукрылых, в клетках некоторых растений и простейших.

Иногда имеет место удвоение одной или нескольких хромосом без каких-либо преобразований ядра - такое явление называется эндорепродукцией .

Итак, все фазы митоза клетки, составляющие , являются обязательными лишь для типичного процесса.

некоторых случаях, главным образом в дифференцированных тканях, митотический цикл претерпевает изменения. Клетки таких тканей утратили способность к воспроизведению целого организма, и метаболическая деятельность их ядра приспособлена к функции поциализированной ткани.

Эмбриональные и меристемные клетки, не утратившие функцию воспроизведения целого организма и относящиеся к недифференцированным тканям, сохраняют полный цикл митоза, на чем и основывается бесполое и вегетативное размножение.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Деление клеток — часть процесса жизни абсолютно любого живого организма. Все новые клетки образуются из старых (материнских). Это одно из основных положений Но существует несколько видов деления, которые напрямую зависят от природы этих клеток.

Деление прокариотических клеток

  • Образуется «плоскость», в которой будут располагаться хромосомы — метафазная плоскость
  • микротрубочки «выбирают специализацию» — центросомные — тянутся от одного полюса клетки к другому, хромосомные — связаны с центромерам (сердинками) хромосом.
  • Двухроматидные хромосомы вытягиваются микротрубочками в центр клетки — они как бы выстраиваются по экватору.

Анафаза
(4n4C)

  • самая короткая фаза по продолжительности
  • центромеры делятся на две части
  • деление двухроматидных хромосом на однохроматидные хроматиды и эти расходится к разным частям клетки.

Телофаза
(4n4C -> 2 x 2n2C)

  • хромосомы (однохроматидные) раскручиваются (деспирализуются), в микроскоп их уже не разглядеть
  • происходит разрушение (растворение) нитей веретена деления
  • вокруг хромосомного набора в каждой части клетки начинает формироваться ядерная оболочка и ядрышки,
  • веретено деления разрушается и образуется перетяжка, которая разделит делящуюся материнскую клетку на две новые дочерние (цитокинез)

Обратите внимание, что митотическое деление клеток характерно для соматических клеток (неполовых, клеток тела) — у них изначально двойной — ДИПЛОИДНЫЙ набор хромосом. И в результате митоза образуются 2 новые клетки, каждая с таким же диплоидным набором.


Самое обсуждаемое
Модальный глагол Can (Could) – детальное руководство с примерами Модальный глагол Can (Could) – детальное руководство с примерами
В чем разница между drive и ride? В чем разница между drive и ride?
Мультимедийная дидактическая игра «Времена года Дидактическая игра Мультимедийная дидактическая игра «Времена года Дидактическая игра "Какое время года?


top