Производная косинуса: (cos x)′. Производная e в степени x и показательной функции Производная c u x

Производная косинуса: (cos x)′. Производная e в степени x и показательной функции Производная c u x

Доказательство и вывод формул производной натурального логарифма и логарифма по основанию a. Примеры вычисления производных от ln 2x, ln 3x и ln nx. Доказательство формулы производной логарифма n-го порядка методом математической индукции.

Содержание

См. также: Логарифм - свойства, формулы, график
Натуральный логарифм - свойства, формулы, график

Вывод формул производных натурального логарифма и логарифма по основанию a

Производная натурального логарифма от x равна единице, деленной на x:
(1) (ln x)′ = .

Производная логарифма по основанию a равна единице, деленной на переменную x, умноженную на натуральный логарифм от a :
(2) (log a x)′ = .

Доказательство

Пусть есть некоторое положительное число, не равное единице. Рассмотрим функцию, зависящую от переменной x , которая является логарифмом по основанию :
.
Эта функция определена при . Найдем ее производную по переменной x . По определению, производная является следующим пределом:
(3) .

Преобразуем это выражение, чтобы свести его к известным математическим свойствам и правилам. Для этого нам нужно знать следующие факты:
А) Свойства логарифма . Нам понадобятся следующие формулы:
(4) ;
(5) ;
(6) ;
Б) Непрерывность логарифма и свойство пределов для непрерывной функции:
(7) .
Здесь - некоторая функция, у которой существует предел и этот предел положителен.
В) Значение второго замечательного предела:
(8) .

Применяем эти факты к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим свойства (4) и (5).

.

Воспользуемся свойством (7) и вторым замечательным пределом (8):
.

И, наконец, применим свойство (6):
.
Логарифм по основанию e называется натуральным логарифмом . Он обозначается так:
.
Тогда ;
.

Тем самым мы получили формулу (2) производной логарифма.

Производная натурального логарифма

Еще раз выпишем формулу производной логарифма по основанию a :
.
Эта формула имеет наиболее простой вид для натурального логарифма, для которого , . Тогда
(1) .

Из-за такой простоты, натуральный логарифм очень широко используется в математическом анализе и в других разделах математики, связанных с дифференциальным исчислением. Логарифмические функции с другими основаниями можно выразить через натуральный логарифм, используя свойство (6):
.

Производную логарифма по основанию можно найти из формулы (1), если вынести постоянную за знак дифференцирования:
.

Другие способы доказательство производной логарифма

Здесь мы предполагаем, что нам известна формула производной экспоненты:
(9) .
Тогда мы можем вывести формулу производной натурального логарифма, учитывая, что логарифм является обратной функцией к экспоненте.

Докажем формулу производной натурального логарифма, применив формулу производной обратной функции :
.
В нашем случае . Обратной функцией к натуральному логарифму является экспонента:
.
Ее производная определяется по формуле (9). Переменные можно обозначить любой буквой. В формуле (9), заменим переменную x на y:
.
Поскольку , то
.
Тогда
.
Формула доказана.


Теперь докажем формулу производной натурального логарифма с помощью правила дифференцирования сложной функции . Поскольку функции и являются обратными друг к другу, то
.
Дифференцируем это уравнение по переменной x :
(10) .
Производная от икса равна единице:
.
Применяем правило дифференцирования сложной функции :
.
Здесь . Подставим в (10):
.
Отсюда
.

Пример

Найти производные от ln 2x, ln 3x и ln nx .

Исходные функции имеют похожий вид. Поэтому мы найдем производную от функции y = ln nx . Затем подставим n = 2 и n = 3 . И, тем самым, получим формулы для производных от ln 2x и ln 3x .

Итак, ищем производную от функции
y = ln nx .
Представим эту функцию как сложную функцию, состоящую из двух функций:
1) Функции , зависящей от переменной : ;
2) Функции , зависящей от переменной : .
Тогда исходная функция составлена из функций и :
.

Найдем производную от функции по переменной x:
.
Найдем производную от функции по переменной :
.
Применяем формулу производной сложной функции .
.
Здесь мы подставили .

Итак, мы нашли:
(11) .
Мы видим, что производная не зависит от n . Этот результат вполне естественен, если преобразовать исходную функцию, применяя формулу логарифма от произведения:
.
- это постоянная. Ее производная равна нулю. Тогда по правилу дифференцирования суммы имеем:
.

; ; .

Производная логарифма модуля x

Найдем производную от еще одной очень важной функции - натурального логарифма от модуля x :
(12) .

Рассмотрим случай . Тогда и функция имеет вид:
.
Ее производная определяется по формуле (1):
.

Теперь рассмотрим случай . Тогда и функция имеет вид:
,
где .
Но производную этой функции мы также нашли в приведенном выше примере. Она не зависит от n и равна
.
Тогда
.

Объединяем эти два случая в одну формулу:
.

Соответственно, для логарифма по основанию a , имеем:
.

Производные высших порядков натурального логарифма

Рассмотрим функцию
.
Мы нашли ее производную первого порядка:
(13) .

Найдем производную второго порядка:
.
Найдем производную третьего порядка:
.
Найдем производную четвертого порядка:
.

Можно заметить, что производная n-го порядка имеет вид:
(14) .
Докажем это методом математической индукции.

Доказательство

Подставим в формулу (14) значение n = 1:
.
Поскольку , то при n = 1 , формула (14) справедлива.

Предположим, что формула (14) выполняется при n = k . Докажем, что из этого следует, что формула справедлива при n = k + 1 .

Действительно, при n = k имеем:
.
Дифференцируем по переменной x :

.
Итак, мы получили:
.
Эта формула совпадает с формулой (14) при n = k + 1 . Таким образом, из предположения, что формула (14) справедлива при n = k следует, что формула (14) справедлива при n = k + 1 .

Поэтому формула (14), для производной n-го порядка, справедлива для любых n .

Производные высших порядков логарифма по основанию a

Чтобы найти производную n-го порядка от логарифма по основанию a , нужно выразить его через натуральный логарифм:
.
Применяя формулу (14), находим n-ю производную:
.

См. также:

Доказательство и вывод формул производной экспоненты (e в степени x) и показательной функции (a в степени x). Примеры вычисления производных от e^2x, e^3x и e^nx. Формулы производных высших порядков.

Содержание

См. также: Показательная функция - свойства, формулы, график
Экспонента, e в степени x - свойства, формулы, график

Основные формулы

Производная экспоненты равна самой экспоненте (производная e в степени x равна e в степени x):
(1) (e x )′ = e x .

Производная показательной функции с основанием степени a равна самой функции, умноженной на натуральный логарифм от a :
(2) .

Экспонента - это показательная функция, у которой основание степени равно числу e , которое является следующим пределом:
.
Здесь может быть как натуральным, так и действительным числом. Далее мы выводим формулу (1) производной экспоненты.

Вывод формулы производной экспоненты

Рассмотрим экспоненту, e в степени x :
y = e x .
Эта функция определена для всех . Найдем ее производную по переменной x . По определению, производная является следующим пределом:
(3) .

Преобразуем это выражение, чтобы свести его к известным математическим свойствам и правилам. Для этого нам понадобятся следующие факты:
А) Свойство экспоненты :
(4) ;
Б) Свойство логарифма :
(5) ;
В) Непрерывность логарифма и свойство пределов для непрерывной функции:
(6) .
Здесь - некоторая функция, у которой существует предел и этот предел положителен.
Г) Значение второго замечательного предела :
(7) .

Применяем эти факты к нашему пределу (3). Используем свойство (4):
;
.

Сделаем подстановку . Тогда ; .
В силу непрерывности экспоненты,
.
Поэтому при , . В результате получаем:
.

Сделаем подстановку . Тогда . При , . И мы имеем:
.

Применим свойство логарифма (5):
. Тогда
.

Применим свойство (6). Поскольку существует положительный предел и логарифм непрерывен, то:
.
Здесь мы также воспользовались вторым замечательным пределом (7). Тогда
.

Тем самым мы получили формулу (1) производной экспоненты.

Вывод формулы производной показательной функции

Теперь выведем формулу (2) производной показательной функции с основанием степени a . Мы считаем, что и . Тогда показательная функция
(8)
Определена для всех .

Преобразуем формулу (8). Для этого воспользуемся свойствами показательной функции и логарифма .
;
.
Итак, мы преобразовали формулу (8) к следующему виду:
.

Производные высших порядков от e в степени x

Теперь найдем производные высших порядков. Сначала рассмотрим экспоненту:
(14) .
(1) .

Мы видим, что производная от функции (14) равна самой функции (14). Дифференцируя (1), получаем производные второго и третьего порядка:
;
.

Отсюда видно, что производная n-го порядка также равна исходной функции:
.

Производные высших порядков показательной функции

Теперь рассмотрим показательную функцию с основанием степени a :
.
Мы нашли ее производную первого порядка:
(15) .

Дифференцируя (15), получаем производные второго и третьего порядка:
;
.

Мы видим, что каждое дифференцирование приводит к умножению исходной функции на . Поэтому производная n-го порядка имеет следующий вид:
.

См. также:

Представлен вывод производных первого порядка арксинуса (arcsin x)′ и арккосинуса (arccos x)′. Для каждой из функций, вывод дан двумя способами.

Содержание

См. также: Арксинус, арккосинус - свойства, графики, формулы

Здесь мы полагаем, что нам известны производные синуса и косинуса. Далее мы выводим производные арксинуса и арккосинуса, учитывая, что они являются обратными функциями к синусу и косинусу, соответственно.

Вывод производной арксинуса

Рассмотрим функцию арксинус от переменной x :
y = arcsin x .
- 1 до + 1 :
.
- π/2 до + π/2 :
.
Функция арксинус является обратной к функции синус:
x = sin y .

Для определения производной арксинуса, применим формулу производной обратной функции:
(1) .

Производная синуса нам известна. Обычно ее записывают в следующем виде:
.
Здесь .
,
где .
Подставим в формулу (1):
(2) .
Здесь
y = arcsin x ;
x = sin y .

Теперь выразим правую часть формулы (2) через переменную x . Для этого заметим, что поскольку , то . Тогда
.
Подставим в формулу (2):
.

Тем самым мы вывели формулу производной арксинуса:
.

Второй способ

Поскольку арксинус и синус являются обратными функциями по отношению друг к другу, то
(3) .
Здесь .
Продифференцируем это уравнение по переменной x . То есть найдем производные левой и правой части и приравняем их друг к другу:
(4) .

Производную правой части находим из таблицы производных :
.

Производную левой части находим по формуле производной сложной функции :
.
Здесь .
Поскольку , то . Поэтому
.
Тогда
.

Подставим в (4):
.
Отсюда
.

Вывод производной арккосинуса

Используя связь между арксинусом и арккосинусом

Производную арккосинуса легко получить из производной арксинуса, если воспользоваться связью между арксинусом и арккосинусом :
.
Отсюда
.

По формуле производной обратной функции

Также производную арккосинуса можно найти по формуле производной обратной функции.

Рассмотрим функцию арккосинус:
y = arccos x .
Здесь независимая переменная x может принимать значения от - 1 до + 1 :
.
Зависимая переменная y может принимать значения от 0 до π :
.
Функция арккосинус является обратной к функции косинус:
x = cos y .

Применим формулу производной обратной функции:
(1) .

Производная косинуса нам известна:
.
Здесь .
Поменяем местами обозначения переменных x и y . Тогда
,
где .
Подставим в формулу (1):
(5) .
Здесь
y = arccos x ;
x = cos y .

Теперь выразим правую часть формулы (5) через переменную x . Поскольку , то . Тогда
.
Подставим в формулу (5):
.

Таким образом, мы вывели формулу производной арккосинуса:
.

Вычисление производной - одна из самых важных операций в дифференциальном исчислении. Ниже приводится таблица нахождения производных простых функций. Более сложные правила дифференцирования смотрите в других уроках:
  • Таблица производных экспоненциальных и логарифмических функций
Приведенные формулы используйте как справочные значения. Они помогут в решении дифференциальных уравнений и задач. На картинке, в таблице производных простых функций, приведена "шпаргалка" основных случаев нахождения производной в понятном для применения виде, рядом с ним даны пояснения для каждого случая.

Производные простых функций

1. Производная от числа равна нулю
с´ = 0
Пример:
5´ = 0

Пояснение :
Производная показывает скорость изменения значения функции при изменении аргумента. Поскольку число никак не меняется ни при каких условиях - скорость его изменения всегда равна нулю.

2. Производная переменной равна единице
x´ = 1

Пояснение :
При каждом приращении аргумента (х) на единицу значение функции (результата вычислений) увеличивается на эту же самую величину. Таким образом, скорость изменения значения функции y = x точно равна скорости изменения значения аргумента.

3. Производная переменной и множителя равна этому множителю
сx´ = с
Пример:
(3x)´ = 3
(2x)´ = 2
Пояснение :
В данном случае, при каждом изменении аргумента функции (х ) ее значение (y) растет в с раз. Таким образом, скорость изменения значения функции по отношению к скорости изменения аргумента точно равно величине с .

Откуда следует, что
(cx + b)" = c
то есть дифференциал линейной функции y=kx+b равен угловому коэффициенту наклона прямой (k).


4. Производная переменной по модулю равна частному этой переменной к ее модулю
|x|" = x / |x| при условии, что х ≠ 0
Пояснение :
Поскольку производная переменной (см. формулу 2) равна единице, то производная модуля отличается лишь тем, что значение скорости изменения функции меняется на противоположное при пересечении точки начала координат (попробуйте нарисовать график функции y = |x| и убедитесь в этом сами. Именно такое значение и возвращает выражение x / |x| . Когда x < 0 оно равно (-1), а когда x > 0 - единице. То есть при отрицательных значениях переменной х при каждом увеличении изменении аргумента значение функции уменьшается на точно такое же значение, а при положительных - наоборот, возрастает, но точно на такое же значение.

5. Производная переменной в степени равна произведению числа этой степени и переменной в степени, уменьшенной на единицу
(x c)"= cx c-1 , при условии, что x c и сx c-1 ,определены а с ≠ 0
Пример:
(x 2)" = 2x
(x 3)" = 3x 2
Для запоминания формулы :
Снесите степень переменной "вниз" как множитель, а потом уменьшите саму степень на единицу. Например, для x 2 - двойка оказалась впереди икса, а потом уменьшенная степень (2-1=1) просто дала нам 2х. То же самое произошло для x 3 - тройку "спускаем вниз", уменьшаем ее на единицу и вместо куба имеем квадрат, то есть 3x 2 . Немного "не научно", но очень просто запомнить.

6. Производная дроби 1/х
(1/х)" = - 1 / x 2
Пример:
Поскольку дробь можно представить как возведение в отрицательную степень
(1/x)" = (x -1)" , тогда можно применить формулу из правила 5 таблицы производных
(x -1)" = -1x -2 = - 1 / х 2

7. Производная дроби с переменной произвольной степени в знаменателе
(1 / x c)" = - c / x c+1
Пример:
(1 / x 2)" = - 2 / x 3

8. Производная корня (производная переменной под квадратным корнем)
(√x)" = 1 / (2√x) или 1/2 х -1/2
Пример:
(√x)" = (х 1/2)" значит можно применить формулу из правила 5
(х 1/2)" = 1/2 х -1/2 = 1 / (2√х)

9. Производная переменной под корнем произвольной степени
(n √x)" = 1 / (n n √x n-1)

Основа доказательства ― определение предела функции. Можно воспользоваться другим способом, используя тригонометрические формулы приведения для косинуса и синуса углов. Выразить одну функцию через другую - косинус через синус, и продифференцировать синус со сложным аргументом.

Рассмотрим первый пример вывода формулы (Cos(х))"

Даем ничтожно малое приращение Δх аргументу х функции у = Cos(х). При новом значении аргумента х+Δх получаем новое значение функции Cos(х+Δх). Тогда приращение функции Δу будет равно Cos(х+Δx)-Cos(x).
Отношение же приращения функции к Δх будет таким: (Cos(х+Δx)-Cos(x))/Δх. Проведем тождественные преобразования в числителе получившейся дроби. Вспомним формулу разности косинусов углов, результатом будет произведение -2Sin(Δх/2) умножить на Sin(х+Δх/2). Находим предел частного lim этого произведения на Δх при Δх, стремящемся к нулю. Известно, что первый (его называют замечательным) предел lim(Sin(Δх/2)/(Δх/2)) равен 1, а предел -Sin(х+Δх/2) равен -Sin(x) при Δx, стремящемся к нулю.
Запишем результат: производная (Cos(х))" равна - Sin(х).

Некоторым больше нравится второй способ вывода той же формулы

Из курса тригонометрии известно: Cos(х) равно Sin(0,5·∏-х), аналогично Sin(х) равно Cos(0,5·∏-x). Тогда дифференцируем сложную функцию - синус дополнительного угла (вместо косинуса икс).
Получим произведение Cos(0,5·∏-х)·(0,5·∏-х)", потому что производная синуса х равна косинусу х. Обращаемся ко второй формуле Sin(х) = Cos(0,5·∏-x) замены косинуса на синус, учитываем, что (0,5·∏-х)" = -1. Теперь получаем -Sin(x).
Итак, найдена производная косинуса, у" = -Sin(х) для функции у = Cos(х).

Часто используемый пример, где употребляется производная косинуса. Функция y = Cos 2 (x) сложная. Находим сначала дифференциал степенной функции с показателем 2, это будет 2·Cos(x), затем умножаем его на производную (Cos(x))", которая равна -Sin(х). Получаем y" = -2·Cos(х)·Sin(x). Когда применим формулу Sin(2·х), синуса двойного угла, получим окончательный упрощенный
ответ y" = -Sin(2·х)

Гиперболические функции

Применяются при изучении многих технических дисциплин: в математике, например, облегчают вычисления интегралов, решение Выражаются они через тригонометрические функции с мнимым аргументом, так, гиперболический косинус ch(х) = Cos(i·х), где i ― мнимая единица, гиперболический синус sh(x) = Sin(i·x).

Производная гиперболического косинуса вычисляется достаточно просто.
Рассмотрим функцию у = (e x +e -x)/2, это и есть гиперболический косинус ch(х). Используем правило нахождения производной суммы двух выражений, правило выноса постоянного множителя (Const) за знак производной. Второе слагаемое 0,5·е -х ― сложная функция (ее производная равна -0,5·е -х), 0,5·е х ― первое слагаемое. (ch(х)) "=((e х +e - x)/2)" можно записать по другому: (0,5·e х +0,5·е - х)" = 0,5·e х -0,5·e - х, потому что производная (e - x)" равна -1, умнноженная на e - x . Получилась разность, а это есть гиперболический синус sh(x).
Вывод: (ch(х))" = sh(x).
Рассмитрим на примере, как вычислить производную функции у = ch(x 3 +1).
По гиперболического косинуса со сложным аргументом у" = sh(x 3 +1)·(x 3 +1)", где (x 3 +1)" = 3·x 2 +0.
Ответ: производная данной функции равна 3·х 2 ·sh(х 3 +1).

Производные рассмотренных функций у = ch(х) и y = Cos(х) табличные

При решении примеров нет необходимости каждый раз дифференцировать их по предложенной схеме, достаточно использовать вывод.
Пример. Продифференцировать функцию у = Cos(x)+Cos 2 (-x)-Ch(5·х).
Легко вычислить (воспользуемся табличными данными), у" = -Sin(x)+Sin(2·х)-5·Sh(5·х).


Самое обсуждаемое
Мультимедийная дидактическая игра «Времена года Дидактическая игра Мультимедийная дидактическая игра «Времена года Дидактическая игра "Какое время года?
Где пуп земли. Зачем человеку пупок. Смотреть что такое Где пуп земли. Зачем человеку пупок. Смотреть что такое "Пуп земли" в других словарях
Главные герои произведения маугли Главные герои произведения маугли


top